login
A355600
a(1) = 37. For n > 1, a(n) = smallest prime q such that q^(a(n-1)-1) == 1 (mod a(n-1)^2).
5
37, 691, 19181, 5849, 18503, 37853, 478741, 18401827, 571007279, 5860639859
OFFSET
1,1
COMMENTS
Is this overall an increasing sequence or does it enter a cycle?
The sequence decreases for the first time at n = 4.
PROG
(PARI) seq(start, terms) = my(x=start, i=1); print1(start, ", "); while(1, forprime(q=1, , if(Mod(q, x^2)^(x-1)==1, print1(q, ", "); x=q; i++; if(i >= terms, break({2}), break))))
seq(37, 20) \\ Print initial 20 terms of sequence
CROSSREFS
Row n = 12 of A249162.
Sequence in context: A338003 A104180 A010953 * A161650 A162165 A162389
KEYWORD
nonn,hard,more
AUTHOR
Felix Fröhlich, Jul 09 2022
STATUS
approved