login
A355602
a(1) = 61. For n > 1, a(n) = smallest prime q such that q^(a(n-1)-1) == 1 (mod a(n-1)^2).
5
61, 601, 2269, 13499, 58313, 1950827, 57480139, 713589493, 4722480517
OFFSET
1,1
COMMENTS
Is this overall an increasing sequence or does it enter a cycle?
PROG
(PARI) seq(start, terms) = my(x=start, i=1); print1(start, ", "); while(1, forprime(q=1, , if(Mod(q, x^2)^(x-1)==1, print1(q, ", "); x=q; i++; if(i >= terms, break({2}), break))))
seq(61, 20) \\ Print initial 20 terms of sequence
CROSSREFS
Row n = 18 of A249162.
Sequence in context: A209548 A302898 A234926 * A069595 A235009 A304764
KEYWORD
nonn,hard,more
AUTHOR
Felix Fröhlich, Jul 09 2022
STATUS
approved