

A104180


Let f[n]=Prime[n+1]Prime[n]; a(n) = Binomial[Prime[12],f[n]].


1



37, 666, 666, 66045, 666, 66045, 666, 66045, 2324784, 666, 2324784, 66045, 666, 66045, 2324784, 2324784, 666, 2324784, 66045, 666, 2324784, 66045, 2324784, 38608020, 66045, 666, 66045, 666, 66045, 6107086800, 66045, 2324784, 666
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A Mealy model is an even integer combinatorial model on a finite symbol base using a mapping of prime differences.
A type of cycling model for sequence based on the Mealy model for sequential machines: the function f is the memory element as a mapping and the Binomial is the combinatorial part. It is called a Mealy machine. Other mapping functions can be used in this general model for an n symbol cycle.


REFERENCES

Taylor L. Booth, Sequential Machines and Automata Theory, John Wiley and Sons, Inc., 1967, page 70.


LINKS

Table of n, a(n) for n=1..33.


MATHEMATICA

digits = 12 f[n_] = Prime[n + 1]  Prime[n] a = Table[Binomial[Prime[digits], f[n]], {n, 1, 16*digits}]


CROSSREFS

Sequence in context: A140764 A228225 A156923 * A010953 A161650 A162165
Adjacent sequences: A104177 A104178 A104179 * A104181 A104182 A104183


KEYWORD

nonn


AUTHOR

Roger L. Bagula, Mar 11 2005


STATUS

approved



