login
A354311
Expansion of e.g.f. exp( x/2 * (exp(2 * x) - 1) ).
3
1, 0, 2, 6, 28, 160, 1056, 7784, 63568, 569664, 5542240, 58038112, 650045760, 7746901760, 97790608384, 1302349549440, 18235836899584, 267663541270528, 4107395264113152, 65739857693144576, 1095095457262013440, 18949711553467957248, 340036076121127395328
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=2..n} k * 2^(k-2) * binomial(n-1,k-1) * a(n-k).
a(n) = n! * Sum_{k=0..floor(n/2)} 2^(n-2*k) * Stirling2(n-k,k)/(n-k)!.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x/2*(exp(2*x)-1))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j*2^(j-2)*binomial(i-1, j-1)*v[i-j+1])); v;
(PARI) a(n) = n!*sum(k=0, n\2, 2^(n-2*k)*stirling(n-k, k, 2)/(n-k)!);
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 23 2022
STATUS
approved