login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277381 a(n) = exp(-1) * Sum_{k>=0} H_n(k)/k!, where H_n(x) is n-th Hermite polynomial. 3
1, 2, 6, 28, 156, 984, 7112, 57488, 508688, 4887840, 50639200, 561416640, 6621963712, 82719611264, 1089925195904, 15094182365440, 219035852333312, 3321573144437248, 52511336993334784, 863594855161338880, 14746060593172585472, 260971042697438779392 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..500

Eric Weisstein's World of Mathematics, Hermite Polynomial

Wikipedia, Hermite polynomials

FORMULA

E.g.f.: exp(exp(2*x)-x^2-1).

MAPLE

g := exp(exp(2*x)-x^2-1): ser := series(g, x, 32):

seq(n!*coeff(ser, x, n), n=0..21); # Peter Luschny, Oct 19 2016

MATHEMATICA

Table[Sum[HermiteH[n, k]/k!, {k, 0, Infinity}]/E, {n, 0, 20}] (* or *)

Table[SeriesCoefficient[Exp[Exp[2 x] - x^2 - 1], {x, 0, n}] n!, {n, 0, 20}]

With[{nmax = 50}, CoefficientList[Series[Exp[Exp[2*x] - x^2 - 1], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 12 2018 *)

Table[Sum[Binomial[n, k] * 2^k * BellB[k] * HermiteH[n-k, 0], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 13 2018 *)

PROG

(PARI) x='x+O('x^50); Vec(serlaplace(exp(exp(2*x)-x^2-1))) \\ G. C. Greubel, Jul 12 2018

(MAGMA) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(Exp(2*x) -x^2 -1))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 12 2018

CROSSREFS

Cf. A277380, A316778.

Sequence in context: A295792 A004984 A326928 * A184695 A086633 A201950

Adjacent sequences:  A277378 A277379 A277380 * A277382 A277383 A277384

KEYWORD

nonn

AUTHOR

Vladimir Reshetnikov, Oct 11 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 11:06 EDT 2020. Contains 334840 sequences. (Running on oeis4.)