login
A351736
Expansion of e.g.f. exp( x * (exp(2 * x) - 1) ).
10
1, 0, 4, 12, 80, 560, 4512, 40768, 407808, 4453632, 52605440, 667234304, 9032423424, 129822564352, 1972450443264, 31559866736640, 530043925495808, 9317136303718400, 170976603113127936, 3268020569256755200, 64928967058257346560, 1338431135849666052096
OFFSET
0,3
LINKS
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} 2^(n-k) * Stirling2(n-k,k)/(n-k)!.
From Seiichi Manyama, Aug 29 2022: (Start)
a(n) = Sum_{k=0..n} (2*k-1)^(n-k) * binomial(n,k).
G.f.: Sum_{k>=0} x^k / (1 - (2*k-1)*x)^(k+1). (End)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(exp(2*x)-1))))
(PARI) a(n) = n!*sum(k=0, n\2, 2^(n-k)*stirling(n-k, k, 2)/(n-k)!);
(PARI) a(n) = sum(k=0, n, (2*k-1)^(n-k)*binomial(n, k)); \\ Seiichi Manyama, Aug 29 2022
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(2*k-1)*x)^(k+1))) \\ Seiichi Manyama, Aug 29 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 20 2022
STATUS
approved