OFFSET
1,1
COMMENTS
The expression is the cyclotomic polynomial value Phi_{p^2}(b) where p=prime(n).
By definition, a(n) > 1. The occurrences of a(n)=2 correspond exactly to the terms of A156585.
Does a(n) tend to infinity (is liminf a(n) infinite)?
If it exists, a(27) > 857. - J.W.L. (Jan) Eerland, Dec 23 2022
a(65) = 1624. - Serge Batalov, Nov 17 2023
LINKS
MATHEMATICA
Table[k=2; Monitor[Parallelize[While[True, If[PrimeQ[(k^(Prime[n]^2)-1)/(k^Prime[n]-1)], Break[]]; k++]; k], k], {n, 1, 10}] (* J.W.L. (Jan) Eerland, Dec 22 2022 *)
PROG
(PARI) forprime(p=2, , for(b=2, +oo, if(ispseudoprime(polcyclo(p^2, b)), print1(b, ", "); break())))
(Python)
from sympy import isprime, prime
def a(n, startb=2):
pn = prime(n); pn2 = pn**2; b = startb
while not isprime((b**pn2-1)//(b**pn-1)): b += 1
return b
print([a(n) for n in range(1, 10)]) # Michael S. Branicky, Jun 21 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeppe Stig Nielsen, Apr 24 2022
EXTENSIONS
a(25)-a(26) from J.W.L. (Jan) Eerland, Dec 23 2022
a(27) from Michael S. Branicky, Apr 04 2023
a(28)-a(33) from Martin Hopf, Nov 10 2023
a(34)-a(60) from Ryan Propper, Nov 17 2023
STATUS
approved