login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353101
Least b > 1 such that (b^(prime(n)^2) - 1)/(b^prime(n) - 1) is prime.
0
2, 2, 22, 2, 43, 24, 315, 38, 54, 265, 605, 61, 697, 306, 1153, 370, 2, 10688, 3075, 2338, 1153, 3243, 130, 2301, 315, 200, 1155, 14739, 4591, 2230, 263, 6665, 250, 10520, 2228, 3699, 1126, 8925, 8732, 10556, 19860, 29121, 32804, 4666, 2313, 27398, 14280, 2013, 29022, 26131, 21430, 21996, 95774, 49363, 12648, 54308, 6737, 8745, 11121, 49627
OFFSET
1,1
COMMENTS
The expression is the cyclotomic polynomial value Phi_{p^2}(b) where p=prime(n).
By definition, a(n) > 1. The occurrences of a(n)=2 correspond exactly to the terms of A156585.
Does a(n) tend to infinity (is liminf a(n) infinite)?
If it exists, a(27) > 857. - J.W.L. (Jan) Eerland, Dec 23 2022
a(65) = 1624. - Serge Batalov, Nov 17 2023
FORMULA
a(n) = A085398(prime(n)^2) = A085398(A001248(n)).
MATHEMATICA
Table[k=2; Monitor[Parallelize[While[True, If[PrimeQ[(k^(Prime[n]^2)-1)/(k^Prime[n]-1)], Break[]]; k++]; k], k], {n, 1, 10}] (* J.W.L. (Jan) Eerland, Dec 22 2022 *)
PROG
(PARI) forprime(p=2, , for(b=2, +oo, if(ispseudoprime(polcyclo(p^2, b)), print1(b, ", "); break())))
(Python)
from sympy import isprime, prime
def a(n, startb=2):
pn = prime(n); pn2 = pn**2; b = startb
while not isprime((b**pn2-1)//(b**pn-1)): b += 1
return b
print([a(n) for n in range(1, 10)]) # Michael S. Branicky, Jun 21 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeppe Stig Nielsen, Apr 24 2022
EXTENSIONS
a(25)-a(26) from J.W.L. (Jan) Eerland, Dec 23 2022
a(27) from Michael S. Branicky, Apr 04 2023
a(28)-a(33) from Martin Hopf, Nov 10 2023
a(34)-a(60) from Ryan Propper, Nov 17 2023
STATUS
approved