login
A353102
Primes of the form 2^k + 3^k + 6.
1
11, 19, 41, 103, 281, 6823, 20201, 14381681, 387682639, 94151567441, 282446313703, 5559069156490121, 16677198879535759, 50031579458738081, 984770919775797277303, 1144561273440060866922804472241, 969773729787523912361831763509149540341223, 2909321189362571427600485469182379896242601
OFFSET
1,1
COMMENTS
Conjecture: There are infinitely many primes of the form 2^k + 3^k + 6.
EXAMPLE
2^1 + 3^1 + 6 = 11, which is a prime.
2^2 + 3^2 + 6 = 19, which is a prime.
MATHEMATICA
Select[Table[2^n + 3^n + 6, {n, 1, 1000}], PrimeQ]
CROSSREFS
Cf. A075996.
Sequence in context: A100557 A066591 A061246 * A068493 A167535 A184328
KEYWORD
nonn
AUTHOR
Hemjyoti Nath, Apr 23 2022
STATUS
approved