login
A352650
Triangle read by rows: T(n,k) = n * T(n-1,k) + (-1)^(n-k) for 0 <= k <= n with initial values T(n,k) = 0 if n < 0 or k < 0 or k > n.
1
1, 0, 1, 1, 1, 1, 2, 4, 2, 1, 9, 15, 9, 3, 1, 44, 76, 44, 16, 4, 1, 265, 455, 265, 95, 25, 5, 1, 1854, 3186, 1854, 666, 174, 36, 6, 1, 14833, 25487, 14833, 5327, 1393, 287, 49, 7, 1, 133496, 229384, 133496, 47944, 12536, 2584, 440, 64, 8, 1, 1334961, 2293839, 1334961, 479439, 125361, 25839, 4401, 639, 81, 9, 1
OFFSET
0,7
COMMENTS
Conjecture 1: T(n,k) = Sum_{i=0..n-k} (-1)^(n+k+i) * A326326(n-k,i) * n^i for 0 <= k <= n.
Conjecture 2: T(n,k) = T(n-k,0) + Sum_{i=1..n-k} T(n-k,i) * T(i+k,k) * k / (i + k - 1) for 0 < k <= n.
FORMULA
T(n,n) = 1 for n >= 0.
T(n,n-1) = n - 1 for n > 0.
T(n,n-2) = (n - 1)^2 for n > 1.
T(n,0) = A000166(n) for n >= 0.
T(n,1) = A002467(n) for n > 0.
T(n,2) = A000166(n) for n > 1.
T(n,k) + T(n,k+1) = (n!) / (k!) for 0 <= k <= n.
T(n,k) = (n - 1) * (T(n-1,k) + T(n-2,k)) for 0 <= k < n-1.
T(n,k) = (T(n,k-2) - (k - 2) * T(n,k-1)) / (k - 1) for 1 < k <= n.
The row polynomials p(n,x) = Sum_{k=0..n} T(n,k) * x^k satisfy recurrence equation p(n,x) = (n - 1) * (p(n-1,x) + p(n-2,x)) + x^n for n > 0 with initial value p(0,x) = 1.
Row sums are p(n,1) = abs(A009179(n)) for n >= 0.
Alternating row sums are p(n,-1) = (-1)^n for n >= 0.
T(n,k) * T(n+1,k+1) - T(n+1,k) * T(n,k+1) = (-1)^(n-k) * A094587(n,k) for 0 <= k <= n.
Define 3x3-matrices T(i,j) with n <= i <= n+2 and k <= j <= k+2. Then we have: det(T(i,j)) = 0^(n-k) for 0 <= k <= n.
E.g.f. of column k >= 0: Sum_{n>=k} T(n,k) * t^n / (n!) = (Sum_{n>=k} (-t)^n / (n!)) * (-1)^k / (1 - t).
E.g.f.: Sum_{n>=0, k=0..n} T(n,k) * x^k * t^n / (n!) = (x * exp(x * t) + exp(-t)) / ((1 + x) * (1 - t)).
p(n,x) = Sum_{k=0..n} ((n!)/(k!))*(x^(k+1) + (-1)^k)/(x + 1) for n >= 0.
T(n,k) = Sum_{i=0..n-k} (-1)^i * (n!) / ((k+i)!) for 0 <= k <= n.
T(n,k) equals matrix product of A094587 and A097807.
EXAMPLE
The triangle T(n,k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8 9
================================================================
0 : 1
1 : 0 1
2 : 1 1 1
3 : 2 4 2 1
4 : 9 15 9 3 1
5 : 44 76 44 16 4 1
6 : 265 455 265 95 25 5 1
7 : 1854 3186 1854 666 174 36 6 1
8 : 14833 25487 14833 5327 1393 287 49 7 1
9 : 133496 229384 133496 47944 12536 2584 440 64 8 1
etc.
MAPLE
T := proc(n, k) option remember;
if k > n then 0 else n * T(n-1, k) + (-1)^(n-k) fi end:
for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Apr 11 2022
CROSSREFS
Cf. A000166 (column 0 and 2), A002467 (column 1), A006347 (column 3), A006348 (column 4), A009179 (row sums, signed), A352988 (matrix inverse).
Sequence in context: A116515 A303118 A037178 * A364038 A328192 A077748
KEYWORD
nonn,easy,tabl
AUTHOR
Werner Schulte, Apr 04 2022
STATUS
approved