login
A351728
Primes p such that if q is the next prime, p+A004086(q) and q+A004086(p) are prime.
1
2, 61, 83, 433, 677, 2351, 2399, 2441, 4397, 4457, 4673, 6257, 6367, 6961, 8263, 8713, 8761, 20627, 21391, 21649, 22721, 22871, 23227, 23761, 25111, 25321, 25589, 25609, 25741, 25841, 26597, 26731, 26981, 27179, 27271, 27299, 27367, 27409, 27481, 27961, 28559, 29881, 40609, 40927, 40933, 42197
OFFSET
1,1
COMMENTS
For each term p except 2, A013632(p) is divisible by 6.
LINKS
EXAMPLE
a(3) = 83 is a term because it is prime, the next prime is 89, and 83+98 = 181 and 38+89 = 127 are both prime.
MAPLE
revdigs:= proc(n) local L, i; L:= convert(n, base, 10);
add(L[-i]*10^(i-1), i=1..nops(L))
end proc:
Primes:= select(isprime, [2, seq(i, i=3..10000, 2)]):
RPrimes:= map(revdigs, Primes):
Primes[select(i -> isprime(Primes[i]+RPrimes[i+1]) and isprime(RPrimes[i]+Primes[i+1]), [$1..nops(Primes)-1])]:
CROSSREFS
Sequence in context: A262079 A364659 A222009 * A336297 A041449 A261944
KEYWORD
nonn,base
AUTHOR
J. M. Bergot and Robert Israel, Mar 20 2022
STATUS
approved