login
A262079
Differences between successive numbers that can be written as palindromes in base 60, cf. A262065.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61
OFFSET
1,60
COMMENTS
First differences of A262065.
From Georg Fischer, Feb 15 2019: (Start)
Up to n = 10000, only 12 different values occur. The following table shows the counts and those values.
59 -12740399
61 1
45 12747601
1 12956461
2 2
3479 216001
1 3599
2753 3600
1 59
3480 60
117 61
1 7202
(End)
LINKS
Eric Weisstein's World of Mathematics, Palindromic Number
Eric Weisstein's World of Mathematics, Sexagesimal
Wikipedia, Sexagesimal
EXAMPLE
a(n) = 1 for n = 1..59, as the first 60 sexagesimal palindromes are 0..59;
a(60) = (1*60^1 + 1*60^0) - 59*(60^0) = 61 - 59 = 2;
a(61) = (2*60^1 + 2*60^0) - (1*60^1+1*60^0) = 122 - 61 = 61.
PROG
(Haskell)
a262079 n = a262079_list !! (n-1)
a262079_list = zipWith (-) (tail a262065_list) a262065_list
CROSSREFS
Sequence in context: A374168 A101896 A130411 * A364659 A222009 A351728
KEYWORD
sign,base
AUTHOR
Reinhard Zumkeller, Sep 10 2015
STATUS
approved