login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A222009 (Product(primitive roots of p) - 1)/p, where p = prime(n) and n > 2. 3
1, 2, 61, 71, 684847, 8621, 4768743913, 192769238731, 31302497, 3624013907027, 3389284413733950439, 20347152500093, 73535243111830065216714893617, 579021662547635771462791245283, 38283945111344558723552263341142779661, 60296900399609972459, 271233083114844569997128597, 1382959355737627871079165208413804169 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,2

COMMENTS

Gauss proved that the product of the primitive roots of p is congruent to 1 modulo p, for all primes p except p = 3.

REFERENCES

C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 52.

LINKS

Table of n, a(n) for n=3..20.

Wikipedia, Primitive root

FORMULA

a(n) = (A123475(n) - 1)/A000040(n) for n > 2.

EXAMPLE

The primitive roots of prime(4) = 7 are 3 and 5, and (3*5 - 1)/7 = 14/7 = 2, so a(4) = 2.

MATHEMATICA

a[n_] := With[{p = Prime[n]}, Select[Range[p - 1], MultiplicativeOrder[#, p] == p - 1 &]]; Table[(Product[ a[n][[i]], {i, Length[a[n]]}] - 1)/Prime[n], {n, 3, 20}]

CROSSREFS

Cf. A060749, A088145, A123475.

Sequence in context: A101896 A130411 A262079 * A336297 A041449 A261944

Adjacent sequences:  A222006 A222007 A222008 * A222010 A222011 A222012

KEYWORD

nonn

AUTHOR

Jonathan Sondow, Feb 09 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 08:55 EDT 2020. Contains 336274 sequences. (Running on oeis4.)