login
A350299
Numbers k > 1 with sigma(k)/(k * log(log(k))) > sigma(m)/(m * log(log(m))) for all m > k, sigma(k) being A000203(k), the sum of the divisors of k.
1
3, 4, 6, 12, 24, 60, 120, 180, 360, 2520, 5040
OFFSET
1,1
COMMENTS
Gronwall's theorem says that lim sup_{k -> infinity} sigma(k)/(k*log(log(k))) = exp(gamma). Moreover if the Riemann hypothesis is true, we have sigma(k)/(k*log(log(k))) < exp(gamma) when k > 5040 (gamma = Euler-Mascheroni constant).
The terms in the sequence listed above are provably correct since their ratios: sigma(k)/(k * log(log(k))) are greater than exp(gamma).
REFERENCES
Guy Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. 63 (1984), 187-213.
LINKS
Keith Briggs, Abundant numbers and the Riemann Hypothesis, Experimental Math., Vol. 16 (2006), pp. 251-256.
S. Nazardonyavi and S. Yakubovich, Extremely Abundant Numbers and the Riemann Hypothesis, Journal of Integer Sequences, 17 (2014), Article 14.2.8.
Thomas Strohmann, C++ code
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Strohmann, Dec 23 2021
STATUS
approved