login
A350263
Triangle read by rows. T(n, k) = BellPolynomial(n, -k).
9
1, 0, -1, 0, 0, 2, 0, 1, 2, -3, 0, 1, -6, -21, -20, 0, -2, -14, 24, 172, 370, 0, -9, 26, 195, 108, -1105, -4074, 0, -9, 178, -111, -2388, -4805, 2046, 34293, 0, 50, 90, -3072, -3220, 23670, 87510, 111860, -138312, 0, 267, -2382, -4053, 47532, 121995, -115458, -1193157, -2966088, -2932533
OFFSET
0,6
EXAMPLE
[0] 1
[1] 0, -1
[2] 0, 0, 2
[3] 0, 1, 2, -3
[4] 0, 1, -6, -21, -20
[5] 0, -2, -14, 24, 172, 370
[6] 0, -9, 26, 195, 108, -1105, - 4074
[7] 0, -9, 178, -111, -2388, -4805, 2046, 34293
[8] 0, 50, 90, -3072, -3220, 23670, 87510, 111860, -138312
[9] 0, 267, -2382, -4053, 47532, 121995, -115458, -1193157, -2966088, -2932533
MAPLE
A350263 := (n, k) -> ifelse(n = 0, 1, BellB(n, -k)):
seq(seq(A350263(n, k), k = 0..n), n = 0..9);
MATHEMATICA
T[n_, k_] := BellB[n, -k]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
CROSSREFS
Main diagonal: A292866, column 1: A000587, variant: A292861.
Sequence in context: A180279 A179968 A323844 * A360677 A263833 A308625
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Dec 23 2021
STATUS
approved