login
A349748
Primes p for which 2^p-1 and 5^p-1 are not relatively prime.
1
2, 179, 239, 359, 419, 431, 499, 547, 571, 641, 659, 719, 761, 937, 1013, 1019, 1223, 1439, 1499, 1559, 1789, 2039, 2339, 2399, 2459, 2539, 2593, 2677, 2699, 2819, 2939, 3299, 3359, 3539, 3779, 4013, 4019, 4273, 4513, 4787, 4919, 5039, 5279, 5393, 5399, 5639, 6173, 6199, 6899, 7079, 8599, 8741, 8929, 9059, 9419, 9479
OFFSET
1,1
COMMENTS
Primes p for which A270390(p) = gcd(A000225(p), A024049(p)) > 1.
EXAMPLE
2 is included as 2^2 - 1 = 3 and 5^2 - 1 = 24 share a prime factor 3.
MATHEMATICA
upto=10^4; Select[Prime[Range[PrimePi[upto]]], GCD[2^#-1, 5^#-1]>1&] (* Paolo Xausa, Nov 30 2021 *)
PROG
(PARI) isA349748(n) = (isprime(n)&&(gcd(2^n-1, 5^n-1)>1));
(Python)
from math import gcd
from sympy import isprime
def ok(n): return isprime(n) and gcd(2**n-1, 5**n-1) > 1
print([k for k in range(9500) if ok(k)]) # Michael S. Branicky, Nov 30 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 30 2021
STATUS
approved