login
A094221
1/detM(n) where M(n) is the n X n matrix m(i,j)=F(i)/F(i+j-1) and F(i)=i-th Fibonacci number.
0
1, -2, -180, 2808000, 63248290560000, -13040516214928232110080000, -173699422048124050990739961787485511680000, 1013027110717881203216509560866301885575342298295136595148800000
OFFSET
1,2
FORMULA
a(n) = A062381(n)/A003266(n). - corrected by Vaclav Kotesovec, May 01 2015
a(n) ~ (-1)^floor(n/2) * A253270 * ((1+sqrt(5))/2)^(n*(4*n^2 - 3*n - 1)/6) / (A253267^2 * A062073^(2*n-1)). - Vaclav Kotesovec, May 01 2015
MATHEMATICA
Table[(-1)^Floor[n/2] * Product[Fibonacci[k]^k, {k, 1, n-1}] * Product[Fibonacci[k]^(2*n-k), {k, n, 2*n-1}] / Product[Fibonacci[k], {k, 1, n}] / Product[Product[Fibonacci[k], {k, 1, j-1}], {j, 1, n}]^2, {n, 1, 10}] (* Vaclav Kotesovec, May 01 2015 *)
PROG
(PARI) a(n)=1/matdet(matrix(n, n, i, j, fibonacci(i)/(fibonacci(i+j-1))))
CROSSREFS
Cf. A062381.
Sequence in context: A349748 A239548 A272237 * A324442 A032593 A176477
KEYWORD
sign
AUTHOR
Benoit Cloitre, May 28 2004
STATUS
approved