OFFSET
1,2
FORMULA
a(n) ~ (-1)^floor(n/2) * A253270 * ((1+sqrt(5))/2)^(n*(4*n^2 - 3*n - 1)/6) / (A253267^2 * A062073^(2*n-1)). - Vaclav Kotesovec, May 01 2015
MATHEMATICA
Table[(-1)^Floor[n/2] * Product[Fibonacci[k]^k, {k, 1, n-1}] * Product[Fibonacci[k]^(2*n-k), {k, n, 2*n-1}] / Product[Fibonacci[k], {k, 1, n}] / Product[Product[Fibonacci[k], {k, 1, j-1}], {j, 1, n}]^2, {n, 1, 10}] (* Vaclav Kotesovec, May 01 2015 *)
PROG
(PARI) a(n)=1/matdet(matrix(n, n, i, j, fibonacci(i)/(fibonacci(i+j-1))))
CROSSREFS
KEYWORD
sign
AUTHOR
Benoit Cloitre, May 28 2004
STATUS
approved