OFFSET
0,2
COMMENTS
It appears that the only Fibonacci number in the sequence is a(0) = 0.
EXAMPLE
a(3) = (F(3)*F(4)*F(5)*F(6)*F(7)) mod (F(3)+F(4)+F(5)+F(6)+F(7)) = 3120 mod 31 = 20.
MAPLE
L:= <0, 1, 1, 2, 3>: R:= NULL:
for i from 1 to 100 do
R:= R, convert(L, `*`) mod convert(L, `+`);
L[1..4]:= L[2..5];
L[5]:= L[3]+L[4];
od:
R;
MATHEMATICA
a[n_]:=Product[Fibonacci@i, {i, n, n+4}]~Mod~Sum[Fibonacci@i, {i, n, n+4}]; Array[a, 41, 0] (* Giorgos Kalogeropoulos, Nov 03 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Nov 03 2021
STATUS
approved