login
A348914
a(n) = Product_{i=n..n+4} A000045(i) mod Sum_{i=n..n+4} A000045(i).
0
0, 6, 12, 20, 10, 57, 24, 186, 77, 120, 68, 74, 2121, 1074, 110, 6104, 10276, 15765, 24811, 27170, 18404, 106578, 50572, 429823, 632905, 639390, 182833, 1064394, 4938336, 4868130, 3498459, 3117542, 15919106, 31939971, 60913680, 64944336, 133285372, 23346462, 201271610, 786480230, 582166718
OFFSET
0,2
COMMENTS
It appears that the only Fibonacci number in the sequence is a(0) = 0.
EXAMPLE
a(3) = (F(3)*F(4)*F(5)*F(6)*F(7)) mod (F(3)+F(4)+F(5)+F(6)+F(7)) = 3120 mod 31 = 20.
MAPLE
L:= <0, 1, 1, 2, 3>: R:= NULL:
for i from 1 to 100 do
R:= R, convert(L, `*`) mod convert(L, `+`);
L[1..4]:= L[2..5];
L[5]:= L[3]+L[4];
od:
R;
MATHEMATICA
a[n_]:=Product[Fibonacci@i, {i, n, n+4}]~Mod~Sum[Fibonacci@i, {i, n, n+4}]; Array[a, 41, 0] (* Giorgos Kalogeropoulos, Nov 03 2021 *)
CROSSREFS
Sequence in context: A365695 A233586 A332543 * A235268 A354931 A105455
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Nov 03 2021
STATUS
approved