This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001060 a(n) = a(n-1) + a(n-2) with a(0)=2, a(1)=5. Sometimes called the Evangelist Series. (Formerly M1338 N0512) 15
 2, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343, 555, 898, 1453, 2351, 3804, 6155, 9959, 16114, 26073, 42187, 68260, 110447, 178707, 289154, 467861, 757015, 1224876, 1981891, 3206767, 5188658, 8395425, 13584083, 21979508, 35563591, 57543099 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Literally the same as A013655(n+1), since A001060(-1) = A013655(0) = 3. - Eric W. Weisstein, Jun 30 2017 Used by the Sofia Gubaidulina and other composers. - Ian Stewart, Jun 07 2012 From a(2) on, sums of five consecutive Fibonacci numbers; the subset of primes is essentially in A153892. - R. J. Mathar, Mar 24 2010 Pisano period lengths: 1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60, ... (is this A001175?). - R. J. Mathar, Aug 10 2012 Also the number of independent vertex sets and vertex covers in the (n+1)-pan graph. - Eric W. Weisstein, Jun 30 2017 REFERENCES A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 52. R. V. Jean, Mathematical Approach to Pattern and Form in Plant Growth, Wiley, 1984. See p. 5. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 A. Brousseau, Seeking the lost gold mine or exploring Fibonacci factorizations, Fib. Quart., 3 (1965), 129-130. Paul Coleman, An Introduction to the Music of Sofia Gubaidulina Tanya Khovanova, Recursive Sequences Casey Mongoven, Fibonacci Pitch Sets. - From Ian Stewart, Jun 07 2012 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. Eric Weisstein's World of Mathematics, Independent Vertex Set Eric Weisstein's World of Mathematics, Pan Graph Eric Weisstein's World of Mathematics, Vertex Cover Index entries for linear recurrences with constant coefficients, signature (1,1) FORMULA a(n) = 2*Fibonacci(n) + Fibonacci(n+3). - Zerinvary Lajos, Oct 05 2007 a(n) = Fibonacci(n+4) - Fibonacci(n-1) for n >= 1. - Ian Stewart, Jun 07 2012 a(n) = Fibonacci(n) + 2*Fibonacci(n+2) = 5*Fibonacci(n) + 2*Fibonacci(n-1). The ratio r(n) := a(n+2)/a(n) satisfies the recurrence r(n+1) = (2*r(n) - 1)/(r(n) - 1). If M denotes the 2 X 2 matrix [2, -1; 1, -1] then [a(n+2), a(n)] = M^n[2, -1]. - Peter Bala, Dec 06 2013 a(n) = 6*F(n) + F(n-3), for F(n)=A000045. - J. M. Bergot, Jul 14 2017 MAPLE with(combinat): a:= n-> 2*fibonacci(n)+fibonacci(n+3): seq(a(n), n=0..40); # Zerinvary Lajos, Oct 05 2007 A001060:=-(2+3*z)/(-1+z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation MATHEMATICA Table[Fibonacci[n + 4] - Fibonacci[n - 1], {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *) LinearRecurrence[{1, 1}, {2, 5}, 50] (* Vincenzo Librandi, Jan 16 2012 *) Table[Fibonacci[n + 2] + LucasL[n + 1], {n, 0, 20}] (* Eric W. Weisstein, Jun 30 2017 *) CoefficientList[Series[(-2 - 3 x)/(-1 + x + x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 22 2017 *) PROG (MAGMA) I:=[2, 5]; [n le 2 select I[n] else Self(n-1)+Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jan 16 2012 (MAGMA) a0:=2; a1:=5; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..35]]; // Bruno Berselli, Feb 12 2013 (PARI) a(n)=6*fibonacci(n)+fibonacci(n-3) \\ Charles R Greathouse IV, Jul 14 2017 (PARI) a(n)=([0, 1; 1, 1]^n*[2; 5])[1, 1] \\ Charles R Greathouse IV, Jul 14 2017 CROSSREFS Cf. A000045. Apart from initial term, same as A013655. Sequence in context: A238661 A135525 A117538 * A042343 A042691 A112732 Adjacent sequences:  A001057 A001058 A001059 * A001061 A001062 A001063 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from James A. Sellers, May 04 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.