login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347953
G.f.: A(x) = 1/C(-x*T(x)^3), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108 and T(x) = 1 + x*T(x)^3 is the g.f. of A001764.
1
1, 1, 2, 8, 35, 171, 882, 4744, 26286, 149045, 860596, 5042968, 29913676, 179270434, 1083794310, 6601817952, 40479778395, 249646876065, 1547539929810, 9637085582640, 60260786147261, 378212395786511, 2381767469829332, 15045137488662048, 95304451461770250
OFFSET
0,3
LINKS
Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
FORMULA
G.f.: A(-x*A(x)^3) = 1/A(x).
G.f.: The series reversion of x*A(x)^3 is x*A(-x)^3.
G.f.: A(x) satisfies A(x) = 1 + x*(1 - A(x) + A(x)^2)^3/A(x).
D-finite with recurrence +4*n*(4*n-1)*(4*n+1)*a(n) +6*(-342*n^3+1233*n^2-1453*n+542)*a(n-1) +243*(n-2)*(33*n^2-123*n+112)*a(n-2) +2187*(n-3)*(3*n-4)*(3*n-8)*a(n-3)=0. - R. J. Mathar, Jul 20 2023
MAPLE
cx := (1-sqrt(1-4*x))/2/x ;
tx := 2/sqrt(3*x)*sin( 1/3*arcsin(sqrt(27*x/4))) ;
gf := 1/subs(x=-x*tx^3, cx) ;
taylor(%, x=0, 40) ;
gfun[seriestolist](%) ; # R. J. Mathar, Jul 20 2023
MATHEMATICA
CoefficientList[y/.AsymptoticSolve[y-1-x(1-y+y^2)^3/y==0, y->1, {x, 0, 24}][[1]], x]
PROG
(PARI) seq(n) = {Vec(1/subst((1 - sqrt(1 - 4*x + O(x^2*x^n))) / (2*x), x, -serreverse(x / (1+x)^3 + O(x*x^n))))} \\ Andrew Howroyd, Nov 22 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Burstein, Nov 02 2021
STATUS
approved