OFFSET
0,3
LINKS
Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
FORMULA
G.f.: A(-x*A(x)^3) = 1/A(x).
G.f.: The series reversion of x*A(x)^3 is x*A(-x)^3.
G.f.: A(x) satisfies A(x) = 1 + x*(1 - A(x) + A(x)^2)^3/A(x).
D-finite with recurrence +4*n*(4*n-1)*(4*n+1)*a(n) +6*(-342*n^3+1233*n^2-1453*n+542)*a(n-1) +243*(n-2)*(33*n^2-123*n+112)*a(n-2) +2187*(n-3)*(3*n-4)*(3*n-8)*a(n-3)=0. - R. J. Mathar, Jul 20 2023
MAPLE
cx := (1-sqrt(1-4*x))/2/x ;
tx := 2/sqrt(3*x)*sin( 1/3*arcsin(sqrt(27*x/4))) ;
gf := 1/subs(x=-x*tx^3, cx) ;
taylor(%, x=0, 40) ;
gfun[seriestolist](%) ; # R. J. Mathar, Jul 20 2023
MATHEMATICA
CoefficientList[y/.AsymptoticSolve[y-1-x(1-y+y^2)^3/y==0, y->1, {x, 0, 24}][[1]], x]
PROG
(PARI) seq(n) = {Vec(1/subst((1 - sqrt(1 - 4*x + O(x^2*x^n))) / (2*x), x, -serreverse(x / (1+x)^3 + O(x*x^n))))} \\ Andrew Howroyd, Nov 22 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Burstein, Nov 02 2021
STATUS
approved