login
A347952
Decimal expansion of exp(1) * (gamma - Ei(-1)).
4
2, 1, 6, 5, 3, 8, 2, 2, 1, 5, 3, 2, 6, 9, 3, 6, 3, 5, 9, 4, 2, 0, 9, 8, 6, 3, 4, 8, 4, 9, 2, 4, 3, 0, 5, 6, 8, 3, 8, 1, 4, 2, 0, 7, 6, 7, 7, 4, 1, 4, 4, 3, 6, 9, 0, 2, 3, 0, 1, 3, 9, 1, 7, 1, 8, 9, 4, 9, 4, 2, 4, 2, 5, 7, 9, 7, 7, 9, 8, 7, 1, 7, 9, 7, 6, 9, 2, 6, 0, 3, 5, 1, 4, 1, 5, 5, 6, 7, 5, 7, 2, 6, 7, 6, 4, 7, 5, 3, 4, 8
OFFSET
1,1
FORMULA
Equals Sum_{k>=1} H(k) / k!, where H(k) is the k-th harmonic number.
Equals -Integral_{x=0..1} exp(x)*log(1-x) dx. - Amiram Eldar, Oct 23 2021
EXAMPLE
2.16538221532693635942098634849243056838142076774144369...
MATHEMATICA
RealDigits[Exp[1] (EulerGamma - ExpIntegralEi[-1]), 10, 110] [[1]]
PROG
(PARI) exp(1)*(Euler + eint1(1)) \\ Michel Marcus, Oct 24 2021
KEYWORD
nonn,cons
AUTHOR
Ilya Gutkovskiy, Oct 23 2021
STATUS
approved