login
A347836
a(n) = 8*(n + floor(n/3)) - 3; second column of A347834.
4
5, 13, 29, 37, 45, 61, 69, 77, 93, 101, 109, 125, 133, 141, 157, 165, 173, 189, 197, 205, 221, 229, 237, 253, 261, 269, 285, 293, 301, 317, 325, 333, 349, 357, 365, 381, 389, 397, 413, 421, 429, 445, 453, 461, 477, 485, 493
OFFSET
1,1
FORMULA
a(n) = A347834(n, 1) = A178415(A265667(n), 2), for n >= 1.
a(n) = (3*A047579(n) + 1)*4 - 1)/3 = ((3*(n + floor(n/3)) - 1)*8 - 1)/3 = ((A319451(n) - 1)*8 - 1)/3, for n >= 1.
O.g.f.: G(x) = (-3 + 8*x + 8*x^2 + 19*x^3)/((1 - x)*(1 - x^3)), with a(0) = -3.
MAPLE
seq(8*(n + floor(n/3)) - 3, n = 1..47); # Peter Luschny, Oct 10 2021
MATHEMATICA
A347836[n_] := 8*(n + Floor[n/3]) - 3; Array[A347836, 50] (* or *)
LinearRecurrence[{1, 0, 1, -1}, {5, 13, 29, 37}, 50] (* Paolo Xausa, Feb 27 2024 *)
CROSSREFS
Cf. A047529 (first column), A178415, A265667, A319451, A347834, A347837 (third column).
Sequence in context: A309588 A268614 A152658 * A100877 A261580 A007521
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 07 2021
STATUS
approved