OFFSET
0,2
COMMENTS
Key-numbers of the pitches of a diminished chord on a standard chromatic keyboard, with root = 0.
LINKS
Jianing Song, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
FORMULA
a(n) = a(n-3) + 12 for n > 2.
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 3.
G.f.: 3*(1 + x + 2*x^2)/((1 - x)*(1 - x^3)).
a(n) = 3*A004773(n) = 3*(floor(n/3) + n).
a(n) = 4*n - 1 + sin((Pi/3)*(2*n + 1))/sin(Pi/3). - Federico Provvedi, Oct 23 2018
E.g.f.: (3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/(3*exp(x/2)) - exp(x)*(1 - 4*x). - Franck Maminirina Ramaharo, Nov 27 2018
Sum_{n>=2} (-1)^n/a(n) = (sqrt(2)-1)*Pi/24 + (2-sqrt(2))*log(2)/24 + sqrt(2)*log(2+sqrt(2))/12. - Amiram Eldar, Dec 30 2021
MAPLE
seq(3*floor(4*n/3), n=0..60); # Muniru A Asiru, Oct 24 2018
MATHEMATICA
Select[Range[0, 200], MemberQ[{0, 3, 6}, Mod[#, 12]]&]
LinearRecurrence[{1, 0, 1, -1}, {0, 3, 6, 12}, 100]
Table[4n-1+Sin[Pi/3(2n+1)]/Sin[Pi/3], {n, 0, 99}] (* Federico Provvedi, Oct 23 2018 *)
PROG
(Magma) [n : n in [0..150] | n mod 12 in [0, 3, 6]]
(PARI) a(n)=3*(4*n\3)
(GAP) Filtered([0..230], n->n mod 12 = 0 or n mod 12 = 3 or n mod 12 = 6); # Muniru A Asiru, Oct 24 2018
(Python) for n in range(0, 60): print(3*int(4*n/3), end=", ") # Stefano Spezia, Dec 07 2018
CROSSREFS
A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Phrygian mode (E): A083034
Locrian mode (B): A082977
Third chords:
Major chord (F,C,G): A083030
Minor chord (D,A,E): A083031
Diminished chord (B): this sequence
Seventh chords:
Major seventh chord (F,C): A319280
Dominant seventh chord (G): A083032
Minor seventh chord (D,A,E): A319279
Half-diminished seventh chord (B): A319452
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Sep 19 2018
STATUS
approved