login
A319452
Numbers that are congruent to {0, 3, 6, 10} mod 12.
4
0, 3, 6, 10, 12, 15, 18, 22, 24, 27, 30, 34, 36, 39, 42, 46, 48, 51, 54, 58, 60, 63, 66, 70, 72, 75, 78, 82, 84, 87, 90, 94, 96, 99, 102, 106, 108, 111, 114, 118, 120, 123, 126, 130, 132, 135, 138, 142, 144, 147, 150, 154, 156, 159, 162, 166, 168, 171, 174, 178
OFFSET
1,2
COMMENTS
Key-numbers of the pitches of a half-diminished chord on a standard chromatic keyboard, with root = 0.
FORMULA
a(n) = a(n-4) + 12 for n > 4.
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
G.f.: x^2*(3 + 3*x + 4*x^2 + 2*x^3)/((1 + x)*(1 + x^2)*(1 - x)^2).
a(n) = (12*n - 11 + (-1)^n + 2*cos(Pi*n/2))/4.
E.g.f.: ((6*x - 5)*cosh(x) + (6*x - 6)*sinh(x) + cos(x) + 4)/2.
Sum_{n>=2} (-1)^n/a(n) = log(12)/8 - (sqrt(3)-1)*Pi/24. - Amiram Eldar, Dec 30 2021
MATHEMATICA
Select[Range[0, 200], MemberQ[{0, 3, 6, 10}, Mod[#, 12]]&]
LinearRecurrence[{1, 0, 0, 1, -1}, {0, 3, 6, 10, 12}, 100]
PROG
(Magma) [n : n in [0..150] | n mod 12 in [0, 3, 6, 10]]
(PARI) my(x='x+O('x^99)); concat(0, Vec(x^2*(3+3*x+4*x^2+2*x^3)/((1+x)*(1+x^2)*(1-x)^2)))
CROSSREFS
A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Third chords:
Major chord (F,C,G): A083030
Minor chord (D,A,E): A083031
Diminished chord (B): A319451
Seventh chords:
Major seventh chord (F,C): A319280
Dominant seventh chord (G): A083032
Minor seventh chord (D,A,E): A319279
Half-diminished seventh chord (B): this sequence
Sequence in context: A310043 A316325 A114981 * A187744 A007960 A339213
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Sep 19 2018
STATUS
approved