login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083033 Numbers that are congruent to {0, 2, 3, 5, 7, 9, 10} mod 12. 16
0, 2, 3, 5, 7, 9, 10, 12, 14, 15, 17, 19, 21, 22, 24, 26, 27, 29, 31, 33, 34, 36, 38, 39, 41, 43, 45, 46, 48, 50, 51, 53, 55, 57, 58, 60, 62, 63, 65, 67, 69, 70, 72, 74, 75, 77, 79, 81, 82, 84, 86, 87, 89, 91, 93, 94, 96, 98, 99, 101, 103, 105, 106, 108, 110, 111 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Key-numbers of the pitches of a Dorian mode scale on a standard chromatic keyboard, with root = 0. A Dorian mode scale can, for example, be played on consecutive white keys of a standard keyboard, starting on the root tone D.

LINKS

Muniru A Asiru, Table of n, a(n) for n = 1..2000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).

FORMULA

G.f.: x^2*(x^2 + 1)*(2*x^4 + x^3 + x + 2)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - R. J. Mathar, Oct 08 2011

From Wesley Ivan Hurt, Jul 20 2016: (Start)

a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.

a(n) = (84*n - 84 + 5*(n mod 7) - 2*((n + 1) mod 7) - 2*((n + 2) mod 7) - 2*((n + 3) mod 7) + 5*((n + 4) mod 7) - 2*((n + 5) mod 7) - 2*((n + 6) mod 7))/49.

a(7k) = 12k - 2, a(7k-1) = 12k - 3, a(7k-2) = 12k - 5, a(7k-3) = 12k - 7, a(7k-4) = 12k - 9, a(7k-5) = 12k - 10, a(7k-6) = 12k - 12. (End)

a(n) = a(n-7) + 12 for n > 7. - Jianing Song, Sep 22 2018

MAPLE

A083033:=n->12*floor(n/7)+[0, 2, 3, 5, 7, 9, 10][(n mod 7)+1]: seq(A083033(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016

MATHEMATICA

Select[Range[0, 150], MemberQ[{0, 2, 3, 5, 7, 9, 10}, Mod[#, 12]] &] (* Wesley Ivan Hurt, Jul 20 2016 *)

LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 2, 3, 5, 7, 9, 10, 12}, 70] (* Jianing Song, Sep 22 2018 *)

PROG

(MAGMA) [n : n in [0..150] | n mod 12 in [0, 2, 3, 5, 7, 9, 10]]; // Wesley Ivan Hurt, Jul 20 2016

(PARI) a(n)=[-2, 0, 2, 3, 5, 7, 9][n%7+1] + n\7*12 \\ Charles R Greathouse IV, Jul 20 2016

(PARI) x='x+O('x^99); concat(0, Vec(x^2*(x^2+1)*(2*x^4+x^3+x+2)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018

(GAP) Filtered([0..120], n-> n mod 12=0 or n mod 12=2 or n mod 12=3 or n mod 12=5 or n mod 12=7 or n mod 12=9 or n mod 12=10); # Muniru A Asiru, Sep 22 2018

CROSSREFS

A guide for some sequences related to modes and chords:

Modes:

Lydian mode (F): A083089

Ionian mode (C): A083026

Mixolydian mode (G): A083120

Dorian mode (D): this sequence

Aeolian mode (A): A060107 (raised seventh: A083028)

Phrygian mode (E): A083034

Locrian mode (B): A082977

Chords:

Major chord: A083030

Minor chord: A083031

Dominant seventh chord: A083032

Sequence in context: A226249 A076355 A081477 * A022847 A047371 A044918

Adjacent sequences:  A083030 A083031 A083032 * A083034 A083035 A083036

KEYWORD

nonn,easy

AUTHOR

James Ingram (j.ingram(AT)t-online.de), Jun 01 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 08:15 EDT 2019. Contains 321469 sequences. (Running on oeis4.)