login
A346485
Möbius transform of A342001, where A342001(n) = A003415(n)/A003557(n).
9
0, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 2, 1, 7, 6, 1, 1, 1, 1, 4, 8, 11, 1, 2, 1, 13, 1, 6, 1, 14, 1, 1, 12, 17, 10, 0, 1, 19, 14, 4, 1, 20, 1, 10, 4, 23, 1, 2, 1, 1, 18, 12, 1, 1, 14, 6, 20, 29, 1, 8, 1, 31, 6, 1, 16, 32, 1, 16, 24, 34, 1, 0, 1, 37, 2, 18, 16, 38, 1, 4, 1, 41, 1, 12, 20, 43, 30, 10, 1, 4, 18, 22, 32, 47
OFFSET
1,6
COMMENTS
Conjecture 1: After the initial zero, the positions of other zeros is given by A036785.
Conjecture 2: No negative terms. Checked up to n = 2^24.
FORMULA
a(n) = Sum_{d|n} A008683(n/d) * A342001(d).
Dirichlet g.f.: Product_{p prime} (1+p^(1-s)-p^(-s)) * Sum_{p prime} p^s/((p^s-1)*(p^s+p-1)). - Sebastian Karlsson, May 08 2022
Sum_{k=1..n} a(k) ~ c * A065464 * n^2 / 2, where c = Sum_{j>=2} (1/2 + (-1)^j * (Fibonacci(j) - 1/2))*PrimeZetaP(j) = 0.4526952873143153104685540856936425315834753528741817723313791528384... - Vaclav Kotesovec, Mar 04 2023
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003557(n) = (n/factorback(factorint(n)[, 1]));
A342001(n) = (A003415(n) / A003557(n));
A346485(n) = sumdiv(n, d, moebius(n/d)*A342001(d));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 26 2021
STATUS
approved