OFFSET
0,6
LINKS
FORMULA
Integers a > b form the solution to FLT n = 2 as follows. (2ab)^2 = (a^2-b^2)^2 - (a^2+b^2)^2. The sequence is the coefficient c of the last b term in the numerator for the simplified expansion of the solution for n=2 as verification of FLT for n=1, 2, ...
EXAMPLE
b/a
1
(3*a^4 + b^4)/(4*b*a^3)
(a^4 + b^4)/(2*b^2*a^2)
(5*a^8 + 10*b^4*a^4 + b^8)/(16*b^3*a^5)
(3*a^8 + 10*b^4*a^4 + 3*b^8)/(16*b^4*a^4)
(7*a^12 + 35*b^4*a^8 + 21*b^8*a^4 + b^12)/(64*b^5*a^7)
(a^12 + 7*b^4*a^8 + 7*b^8*a^4 + b^12)/(16*b^6*a^6)
(9*a^16 + 84*b^4*a^12 + 126*b^8*a^8 + 36*b^12*a^4 + b^16)/(256*b^7*a^9)
(5*a^16 + 60*b^4*a^12 + 126*b^8*a^8 + 60*b^12*a^4 + 5*b^16)/(256*b^8*a^8)
........
(K + cb^m)/2^m1b^m2c^m3
Seq = c for integers K,b,m1,m2,m3,n = 1,2,3...
MAPLE
sigma := proc(n) local i; add(i, i=convert(n, base, 2)) end:
a := proc(n) if n=0 or type(n, odd) then 1 else if type(iquo(n, 2), odd) then n/2 else n/2^(1-sigma(n)+sigma(n-1)) fi fi end: # Peter Luschny, Aug 03 2009
PROG
(PARI) \ verification of general solution in integers \ a>b, x = 2ab, y=a^2-b^2, z=a^2+b^2 \ or FLT n=2 x^n+y^n <> z^n = (2ab)^n + (a^2-b^2)^n <> \(a^2+b^2)^n for n > 2 flt(n, a1, b1) = for(x=0, n, print(f(x, a1, b1))) f(n, a, b) = simplify(((a^2+b^2)^n - (a^2-b^2)^n)/(2*a*b)^n) coeffb(m) = { for(y=1, m, n=y; if(n%2, x=1, while(n%2==0, n=n/2); x=n; ); print1(x", ") ) }
CROSSREFS
KEYWORD
easy,nonn,uned
AUTHOR
Cino Hilliard, Aug 02 2003
STATUS
approved