login
A034266
Partial sums of A027818.
4
0, 1, 15, 99, 435, 1485, 4257, 10725, 24453, 51480, 101530, 189618, 338130, 579462, 959310, 1540710, 2408934, 3677355, 5494401, 8051725, 11593725, 16428555, 22940775, 31605795, 43006275, 57850650, 76993956, 101461140, 132473044, 171475260, 220170060, 280551612
OFFSET
0,3
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 194-196.
LINKS
FORMULA
a(n) = (7*n+1)*binomial(n+6, 7)/8.
G.f.: x*(1+6*x)/(1-x)^9.
E.g.f.: x*(8! +262080*x +383040*x^2 +210000*x^3 +52080*x^4 +6216*x^5 + 344*x^6 +7*x^7)*exp(x)/8!
MAPLE
f:=n->(7*n+8)*binomial(n+7, 7)/8; [seq(f(n), n=-1..40)]; # N. J. A. Sloane, Mar 25 2015
MATHEMATICA
CoefficientList[Series[x(1+6x)/(1-x)^9, {x, 0, 30}], x] (* Vincenzo Librandi, Mar 20 2015 *)
Table[(7*n+1)*Binomial[n+6, 7]/8, {n, 0, 35}] (* G. C. Greubel, Aug 29 2019 *)
PROG
(PARI) lista(nn) = for (n=0, nn, print1((7*n+1)*binomial(n+6, 7)/8, ", ")); \\ Michel Marcus, Mar 20 2015
(Magma) [0] cat [(7*n+8)*Binomial(n+7, 7)/8: n in [0..30]]; // Vincenzo Librandi, Mar 20 2015
(Sage) [(7*n+1)*binomial(n+6, 7)/8 for n in (0..35)] # G. C. Greubel, Aug 29 2019
(GAP) List([0..35], n-> (7*n+1)*Binomial(n+6, 7)/8); # G. C. Greubel, Aug 29 2019
CROSSREFS
a(n)=f(n, 6) where f is given in A034261.
Cf. A093564 ((7, 1) Pascal, column m=8).
Cf. similar sequences listed in A254142.
Sequence in context: A341396 A307158 A000973 * A087661 A319777 A242657
KEYWORD
easy,nonn
EXTENSIONS
Better description from Barry E. Williams, Jan 25 2000
Corrected and extended by N. J. A. Sloane, Apr 21 2000
More terms from Michel Marcus, Mar 20 2015
STATUS
approved