This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A254142 a(n) = (9*n+10)*binomial(n+9,9)/10. 10
 1, 19, 154, 814, 3289, 11011, 32032, 83512, 199342, 442442, 923780, 1830764, 3468374, 6317234, 11113784, 18958808, 31461815, 50930165, 80613390, 125014890, 190285095, 284712285, 419329560, 608658960, 871616460, 1232604516, 1722822024, 2381824984 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Partial sums of A056003. If n is of the form 8*k+2*(-1)^k-1 or 8*k+2*(-1)^k-2 then a(n) is odd. LINKS Bruno Berselli, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1). FORMULA G.f.: (1 + 8*x) / (1 - x)^11. a(n) = Sum_{i=0..n} (i+1)*A000581(i+8). a(n+1) = 8*A001287(n+10) + A001287(n+11). MATHEMATICA Table[(9 n + 10) Binomial[n + 9, 9]/10, {n, 0, 30}] PROG (PARI) vector(30, n, n--; (9*n+10)*binomial(n+9, 9)/10) (Sage) [(9*n+10)*binomial(n+9, 9)/10 for n in (0..30)] (MAGMA) [(9*n+10)*Binomial(n+9, 9)/10: n in [0..30]]; CROSSREFS Cf. A000581, A001287, A056003. Cf. sequences of the type (k*n+k+1)*binomial(n+k,k)/(k+1): A000217 (k=1), A000330 (k=2), A001296 (k=3), A034263 (k=4), A051946 (k=5), A034265 (k=6), A034266 (k=7), A056122 (k=8), this sequence (k=9). Sequence in context: A160431 A010825 A022711 * A107891 A302352 A301398 Adjacent sequences:  A254139 A254140 A254141 * A254143 A254144 A254145 KEYWORD nonn,easy AUTHOR Bruno Berselli, Jan 26 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 03:29 EDT 2018. Contains 313810 sequences. (Running on oeis4.)