login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027818 a(n) = (n+1)*binomial(n+6,6). 5
1, 14, 84, 336, 1050, 2772, 6468, 13728, 27027, 50050, 88088, 148512, 241332, 379848, 581400, 868224, 1268421, 1817046, 2557324, 3542000, 4834830, 6512220, 8665020, 11400480, 14844375, 19143306, 24467184, 31011904 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of 13-subsequences of [ 1, n ] with just 6 contiguous pairs.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).

FORMULA

G.f.: (1+6*x)/(1-x)^8.

a(n) = A245334(n+6,6)/A000142(6). - Reinhard Zumkeller, Aug 31 2014

E.g.f.: (7! +9360*x +20520*x^2 +15000*x^3 +4650*x^4 +666*x^5 +43*x^6 + x^7)*exp(x)/7!. - G. C. Greubel, Aug 29 2019

MAPLE

seq((n+1)*binomial(n+6, 6), n=0..30); # Zerinvary Lajos, Oct 19 2006

MATHEMATICA

Table[(n+1)*Binomial[n+6, 6], {n, 0, 30}] (* G. C. Greubel, Aug 29 2019 *)

PROG

(Haskell)

a027818 n = (n + 1) * a007318' (n + 6) 6

-- Reinhard Zumkeller, Aug 31 2014

(PARI) a(n) = (n+1)*binomial(n+6, 6) \\ Charles R Greathouse IV, Jun 11 2015

(MAGMA) [(n+1)*Binomial(n+6, 6): n in [0..30]]; // G. C. Greubel, Aug 29 2019

(Sage) [(n+1)*binomial(n+6, 6) for n in (0..30)] # G. C. Greubel, Aug 29 2019

(GAP) List([0..30], n-> (n+1)*Binomial(n+6, 6)); # G. C. Greubel, Aug 29 2019

CROSSREFS

Cf. A093564 ((7, 1) Pascal, column m=7). Partial sums of A050403.

Cf. A062190, A007813, A000142, A245334.

Sequence in context: A008451 A033276 A006858 * A054149 A273182 A025607

Adjacent sequences:  A027815 A027816 A027817 * A027819 A027820 A027821

KEYWORD

nonn,easy

AUTHOR

thi ngoc dinh (via R. K. Guy)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 06:01 EDT 2019. Contains 328291 sequences. (Running on oeis4.)