login
A340629
Decimal expansion of Product_{primes p == 1 (mod 5)} (p^2+1)/(p^2-1).
12
1, 0, 2, 1, 8, 7, 8, 0, 6, 0, 4, 1, 8, 7, 5, 6, 6, 7, 5, 7, 4, 4, 4, 4, 8, 9, 1, 4, 6, 0, 0, 2, 7, 0, 8, 2, 6, 1, 7, 0, 4, 6, 0, 7, 3, 7, 7, 3, 2, 5, 1, 6, 4, 0, 6, 6, 6, 0, 1, 1, 9, 4, 4, 3, 7, 7, 0, 9, 0, 4, 7, 6, 7, 0, 5, 6, 6, 0, 0, 8, 6, 0, 6, 4, 5, 5, 1, 4, 9, 9, 9, 5, 0, 0, 5, 9, 8, 4, 1, 4, 9, 9, 9, 0, 6, 2, 3, 7, 6, 0, 1, 0, 5, 2, 3, 3, 3, 2, 0, 3, 5
OFFSET
1,3
LINKS
Salma Ettahri, Olivier Ramaré, and Léon Surel, Fast multi-precision computation of some Euler products, arXiv:1908.06808 [math.NT], 2019, p. 20 (70-digit-precision data).
Steven Finch, Greg Martin, and Pascal Sebah, Roots of unity and nullity modulo n, Proc. Amer. Math. Soc. Volume 138, Number 8, August 2010, pp. 2729-2743.
Steven Finch and Pascal Sebah, Residue of a Mod 5 Euler Product, arXiv:0912.3677 [math.NT], 2009 (formulas).
Alessandro Languasco and Alessandro Zaccagnini, On the constant in the Mertens product for arithmetic progressions. I. Identities, Funct. Approx. Comment. Math. Volume 42, Number 1 (2010), 17-27, (preliminary version).
Richard J. Mathar, Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
FORMULA
Equals 6*sqrt(5)/(13*A340628).
Equals A340004^2/A340808. - R. J. Mathar, Jan 15 2021
Equals 15*sqrt(65)*g/(13*Pi^2) where g = sqrt(Cl2(2*Pi/5)^2 + Cl2(4*Pi/5)^2) = 1.0841621352693895..., and Cl2 is the Clausen function of order 2. Formula by Pascal Sebah (personal communication). - Artur Jasinski, Jan 20 2021
Equals Sum_{q in A004615} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021
EXAMPLE
1.0218780604187566757444489146002708261704607377325...
MAPLE
evalf(Re(15*sqrt((1/13)*(5*((I*Pi^2*(1/150)-I*polylog(2, (-1)^(2/5)))^2+((1/150)*(11*I)*Pi^2+I*polylog(2, (-1)^(4/5)))^2)))/Pi^2), 120) # Vaclav Kotesovec, Jan 20 2021, after formula by Pascal Sebah.
MATHEMATICA
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; PrintTemporary["iteration = ", w, ", difference = ", N[difz, digits]]; w++]; Exp[sumz]);
$MaxExtraPrecision = 1000; digits = 121; Chop[N[1/(Z[5, 1, 4]/Z[5, 1, 2]^2), digits]] (* Vaclav Kotesovec, Jan 15 2021, took over 20 minutes *)
digits = 121; digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits][[1]];
cl[x_] := I (PolyLog[2, (-1)^x] - PolyLog[2, -(-1)^(1 - x)]);
A340629 := (15 Sqrt[65]/(26 Pi^2)) Sqrt[cl[2/5]^2 + cl[4/5]^2];
digitize[A340629] (* Peter Luschny, Jan 23 2021 *)
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Jan 13 2021
EXTENSIONS
Corrected and more terms from Vaclav Kotesovec, Jan 15 2021
STATUS
approved