OFFSET
0,3
COMMENTS
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..200
FORMULA
a(n) = A005649(n-1)*binomial(2*n-1,n-1) = A005649(n-1)*A001700(n-1) for n > 0. - Andrew Howroyd, Dec 31 2020
EXAMPLE
The a(0) = 1 through a(2) = 6 sequences:
() (1,1) (1,1,1,2)
(1,1,2,2)
(1,2,2,2)
(2,1,1,1)
(2,2,1,1)
(2,2,2,1)
The a(3) = 80 sequences:
212222 111121 122233 333112 211133
221222 111211 133222 333211 233111
222122 112111 222133 112233 331112
222212 121111 222331 113322 332111
122221 123333 331222 221133 111223
211222 133332 332221 223311 111322
221122 213333 122223 331122 221113
222112 233331 132222 332211 223111
112221 333312 222213 112223 311122
122211 333321 222231 113222 322111
211122 122333 312222 222113 111123
221112 133322 322221 222311 111132
111221 221333 112333 311222 211113
112211 223331 113332 322211 231111
122111 333122 211333 111233 311112
211112 333221 233311 111332 321111
MATHEMATICA
allnorm[n_]:=If[n<=0, {{}}, Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1]];
Table[Length[Select[Join@@Permutations/@allnorm[2*n], Length[Split[#]]==n&]], {n, 0, 3}]
PROG
(PARI) \\ here b(n) is A005649.
b(n) = {sum(k=0, n, stirling(n, k, 2)*(k + 1)!)}
a(n) = {if(n==0, 1, b(n-1)*binomial(2*n-1, n-1))} \\ Andrew Howroyd, Dec 31 2020
CROSSREFS
A335461 has this as main diagonal n = 2*k.
A336108 is the version for compositions.
A337504 is the version for compositions and anti-runs.
A337505 is the version for anti-runs.
A000670 counts sequences covering an initial interval.
A005649 counts anti-runs covering an initial interval.
A124767 counts maximal runs in standard compositions.
A333769 gives run lengths in standard compositions.
A337504 counts compositions of 2*n with n maximal anti-runs.
A337565 gives anti-run lengths in standard compositions.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 03 2020
EXTENSIONS
Terms a(5) and beyond from Andrew Howroyd, Dec 31 2020
STATUS
approved