login
A337367
Sum of square end-to-end distance over all self-avoiding n-step walks on a square lattice where no adjacent points are allowed, except those for consecutive steps.
0
0, 4, 32, 156, 608, 2116, 6816, 20844, 61376, 175628, 491248, 1349172, 3650144, 9751532, 25774672, 67501556, 175375136, 452454276, 1160098576, 2958123556, 7505767840, 18959922796, 47701159264, 119570463980, 298719578688, 743984084700, 1847709517360, 4576818079076, 11309417827072
OFFSET
0,2
COMMENTS
The corresponding number of n-step walks is given in A173380.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes the sequence A173380).
LINKS
Sequence Fans Mailing list, discussion of the sequence A173380, November 2010.
EXAMPLE
The allowed 4-step walks with their associated end-to-end square distances are:
.
+ 10
4 | 8 8 8 16
+--+ + +--+ + + X--+---+---+---+
| | | 10 | |
+ + + +--+--+ +--+ + +--+ 10 + 10
| | | | | | | |
X--+ X--+ X--+ X--+ X--+ X--+--+ X--+--+ X--+--+--+
.
The eight non-straight walks sum to 68, and these can be walked in eight ways on the square lattice. The remaining straight walk can be walking in four ways. Thus a(4) = 68 * 8 + 16 * 4 = 608.
CROSSREFS
Sequence in context: A302267 A113154 A302966 * A334323 A270161 A270977
KEYWORD
nonn,walk
AUTHOR
Scott R. Shannon, Aug 25 2020
STATUS
approved