OFFSET
0,6
COMMENTS
For the decimal expansion of the real part of Sum_{m>=1} 1/(1/2 + i*z(m))^4 where z(m) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function see A337404.
Sum_{m>=1} 1/(1/2 + i*z(m))^1 = 0.01154785448306... - i*A where 0.01154785448306 = A074760/2 and A > 10.5.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 = -0.0230771586479... - i*0.000728434... where -0.0230771586479 = A245275/2
Sum_{m>=1} 1/(1/2 + i*z(m))^3 = -0.000055579115726... + i*0.0007262105... where -0.000055579115726 = A245276/2
Sum_{m>=1} 1/(1/2 + i*z(m))^4 = 0.0000368136106308... + i*0.0000044382...
Sum_{m>=1} 1/z(m) is a divergent series; see A332614.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645.
Sum_{m>=1} 1/z(m)^3 = 0.0007295482727097...; see A333360.
Sum_{m>=1} 1/z(m)^4 = 0.0000371725992852...; see A335815.
Sum_{m>=1} 1/z(m)^5 = 0.0000022311886995...; see A335814.
Sum_{m>=1} 1/z(m)^6 = 0.0000001441739314...; see A335826.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276
LINKS
FORMULA
No explicit formula is known.
EXAMPLE
0.000004438269312506953
MATHEMATICA
(* 7-day-long procedure *)
kk = 0; Do[kk = kk + 1/(N[ZetaZero[n], 100])^4 , {n, 1, 1000000}]; Take[Join[{0, 0, 0, 0, 0}, RealDigits[Im[kk]][[1]]], 11]
CROSSREFS
KEYWORD
AUTHOR
Artur Jasinski, Aug 26 2020
STATUS
approved