login
A332814
a(n) is -1, 0, or +1 such that a(n) == A156552(n) (mod 3).
10
0, 1, -1, 0, 1, -1, -1, 1, 0, 0, 1, -1, -1, -1, 1, 0, 1, 1, -1, 1, 0, 0, 1, -1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 0, -1, 0, -1, -1, 0, 0, 1, 1, -1, 1, 1, 0, 1, -1, 0, 1, 1, -1, -1, -1, 0, -1, 0, -1, 1, 1, -1, 0, -1, 0, -1, 0, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 1, 1, 0, -1, -1, 1, 1, 1, 0, -1, 0, 1, -1, 0
OFFSET
1
FORMULA
a(n) = A102283(A156552(n)).
If A329903(n) = 2, then a(n) = -1, otherwise a(n) = A329903(n).
a(n) = A332823(A332461(n)) = A332823(A332462(n)).
a(2^n) = A000035(n), for all n >= 0.
a(n^2) = 0, for all n >= 1.
a(A000040(n)) = (-1)^(n-1).
a(A003961(n)) = -a(n).
a(2*n) = ((2-a(n)) mod 3) - 1. - Peter Munn, Aug 28 2021
PROG
(PARI)
A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
A332814(n) = { my(u=A156552(n)%3); if(2==u, -1, u); };
CROSSREFS
Cf. A329609, A329604, A332812 for positions of 0's, +1's and -1's in this sequence.
Sequence in context: A188068 A181632 A105565 * A353788 A348737 A285418
KEYWORD
sign
AUTHOR
Antti Karttunen, Mar 01 2020
STATUS
approved