login
A181632
The Fibonacci Champernowne sequence.
1
0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1
OFFSET
0,1
COMMENTS
Uses Fibonacci Maximal notation: headings are (..., 13, 8, 5, 3, 2, 1) filling in terms from the right.
Minimal notation fills in from the left. 8 in Fibonacci Maximal = (1011) = (5 + 2 + 1), whereas 8 in Minimal = (1100) = (5 + 3).
FORMULA
Write n in Fibonacci Maximal notation and juxtapose.
EXAMPLE
First few segregated Fibonacci terms (0-6) = (0, 1, 10, 11, 101, 110, 111);
so the juxtaposed string begins (0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1,...).
MATHEMATICA
Flatten[DeleteCases[IntegerDigits[-1 + Range[200], 2], {___, 0, 0, ___}]]
(* Peter J. C. Moses, Mar 03 2015 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Gary W. Adamson, Nov 02 2010
STATUS
approved