login
A332738
Composite squarefree numbers k = Product_{i} p_i such that k^2 is divisible by Sum_{i} p_i^2.
1
5642, 9758, 15402, 51051, 72105, 73815, 113883, 134805, 149226, 202895, 270655, 352495, 443555, 552958, 627095, 650845, 831369, 831831, 841269, 870870, 881705, 956242, 1000110, 1088255, 1135290, 1255110, 1255215, 1418395, 1447095, 1455762, 1610070, 1718717, 1746955
OFFSET
1,1
LINKS
EXAMPLE
5642 = 2 * 7 * 13 * 31 is a term since 5642^2/(2^2 + 7^2 + 13^2 + 31^2) = 26908 is an integer.
MATHEMATICA
Select[Range[10^6], CompositeQ[#] && SquareFreeQ[#] && Divisible[#^2, Plus @@ (FactorInteger[#][[;; , 1]]^2)] &]
CROSSREFS
Cf. A131647.
Sequence in context: A201252 A247402 A339961 * A359055 A184080 A234401
KEYWORD
nonn
AUTHOR
Amiram Eldar, Feb 21 2020
STATUS
approved