login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131647
Composite numbers that are products of distinct primes and divisible by the sum of those primes.
2
30, 70, 105, 231, 286, 627, 646, 805, 897, 1122, 1581, 1798, 2730, 2958, 2967, 3055, 3526, 3570, 4070, 4543, 5487, 5658, 6461, 6745, 7198, 7881, 8778, 8970, 9222, 9282, 9717, 10366, 10370, 10626, 10707, 11130, 14231, 15015, 16377, 16530, 19866
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..2000 from Harvey P. Dale)
EXAMPLE
1122 = 2*3*11*17 and 1122 is divisible by 2+3+11+17 = 33.
MAPLE
with(numtheory): P:=proc(q) local a, k, n; for n from 2 to q do
if issqrfree(n) and not isprime(n) then a:=ifactors(n)[2];
if type(n/add(a[k][1], k=1..nops(a)), integer) then print(n); fi;
fi; od; end: P(10^9); # Paolo P. Lava, Sep 19 2014
MATHEMATICA
Select[Range[2, 20000], PrimeQ[ # ] == False && Union[Transpose[FactorInteger[ # ]][[2]]] == {1} && Mod[ #, Plus @@ Transpose[FactorInteger[ # ]][[1]]] == 0 &]
pdpQ[n_]:=Module[{fi=Transpose[FactorInteger[n]]}, !PrimeQ[n]&&Max[fi[[2]]] == 1&&Divisible[n, Total[fi[[1]]]]]; Select[Range[2, 50000], pdpQ] (* Harvey P. Dale, Oct 16 2013 *)
PROG
(PARI) lista(nn) = {forcomposite(n=1, nn, f = factor(n); nbp = #f~; if ((vecmax(f[, 2]) == 1) && !(n % sum(i=1, nbp, f[i, 1])), print1(n, ", ")); ); } \\ Michel Marcus, Sep 19 2014
CROSSREFS
Sequence union A000040 = A005117 intersect A086486. - Ray Chandler, Nov 29 2011
Sequence in context: A325378 A164596 A295102 * A301900 A357854 A071141
KEYWORD
nonn
AUTHOR
Tanya Khovanova, Sep 08 2007
STATUS
approved