login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A301900 Heinz numbers of strict non-knapsack partitions. Squarefree numbers such that more than one divisor has the same Heinz weight A056239(d). 12
30, 70, 154, 165, 210, 273, 286, 330, 390, 442, 462, 510, 546, 561, 570, 595, 646, 690, 714, 741, 770, 858, 870, 874, 910, 930, 1045, 1110, 1122, 1155, 1173, 1190, 1230, 1254, 1290, 1326, 1330, 1334, 1365, 1410, 1430, 1482, 1495, 1590, 1610, 1653, 1770 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

An integer partition is knapsack if every distinct submultiset has a different sum. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

LINKS

Table of n, a(n) for n=1..47.

FORMULA

Complement of A005117 in A299702.

EXAMPLE

Sequence of strict non-knapsack partitions begins: (321), (431), (541), (532), (4321), (642), (651), (5321), (6321), (761), (5421), (7321), (6421), (752), (8321), (743), (871), (9321), (7421), (862), (5431), (6521).

MATHEMATICA

wt[n_]:=If[n===1, 0, Total[Cases[FactorInteger[n], {p_, k_}:>k*PrimePi[p]]]];

Select[Range[1000], SquareFreeQ[#]&&!UnsameQ@@wt/@Divisors[#]&]

CROSSREFS

Cf. A000712, A005117, A056239, A108917, A112798, A122768, A275972, A276024, A284640, A296150, A299701, A299702, A299729, A301829, A301854, A301899.

Sequence in context: A164596 A295102 A131647 * A071141 A071312 A071142

Adjacent sequences:  A301897 A301898 A301899 * A301901 A301902 A301903

KEYWORD

nonn

AUTHOR

Gus Wiseman, Mar 28 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 22 18:55 EST 2019. Contains 329410 sequences. (Running on oeis4.)