

A201252


Initial primes in prime septuplets (p, p+2, p+8, p+12, p+14, p+18, p+20) preceding the maximal gaps in A201251.


3



5639, 88799, 284729, 1146779, 8573429, 24001709, 43534019, 87988709, 157131419, 522911099, 706620359, 1590008669, 2346221399, 3357195209, 11768282159, 30717348029, 33788417009, 62923039169, 68673910169, 88850237459, 163288980299, 196782371699, 421204876439
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Prime septuplets (p, p+2, p+8, p+12, p+14, p+18, p+20) are one of the two types of densest permissible constellations of 7 primes. Maximal gaps between septuplets of this type are listed in A201251; see more comments there. A233038 lists the corresponding primes at the end of the maximal gaps.


LINKS

Alexei Kourbatov, Table of n, a(n) for n = 1..52
Tony Forbes, Prime ktuplets
Alexei Kourbatov, Maximal gaps between prime ktuples
Alexei Kourbatov, Tables of record gaps between prime constellations, arXiv preprint arXiv:1309.4053, 2013.
Eric W. Weisstein, kTuple Conjecture


EXAMPLE

The gap of 83160 between septuplets starting at p=5639 and p=88799 is the very first gap, so a(1)=5639. The gap of 195930 between septuplets starting at p=88799 and p=284729 is a maximal gap  larger than any preceding gap; therefore a(2)=88799. The next gap starts at p=284729 and is again a maximal gap, so a(3)=284729. The next gap is smaller, so it does not contribute to the sequence.


CROSSREFS

Cf. A022010 (prime septuplets p, p+2, p+8, p+12, p+14, p+18, p+20), A201251, A233038.
Sequence in context: A229591 A161193 A022010 * A247402 A184080 A234401
Adjacent sequences: A201249 A201250 A201251 * A201253 A201254 A201255


KEYWORD

nonn,hard


AUTHOR

Alexei Kourbatov, Nov 28 2011


STATUS

approved



