login
A329345
Lexicographically earliest infinite sequence such that a(i) = a(j) => A246277(A329044(i)) = A246277(A329044(j)) for all i, j.
10
1, 2, 2, 3, 2, 3, 2, 4, 4, 3, 2, 5, 2, 3, 6, 7, 2, 7, 2, 5, 6, 3, 2, 8, 9, 3, 10, 5, 2, 11, 2, 10, 6, 3, 12, 13, 2, 3, 6, 4, 2, 4, 2, 5, 14, 3, 2, 15, 16, 17, 6, 5, 2, 18, 19, 20, 6, 3, 2, 21, 2, 3, 21, 18, 22, 23, 2, 5, 6, 24, 2, 25, 2, 3, 26, 5, 27, 23, 2, 7, 28, 3, 2, 7, 29, 3, 6, 20, 2, 30, 31, 5, 6, 3, 32, 33, 2, 34, 35, 16, 2, 23, 2, 20, 36
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of function f(n) = A246277(A329044(n)).
For all i, j:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A329045(i) = A329045(j),
a(i) = a(j) => A329343(i) = A329343(j),
a(i) = a(j) => A329348(i) = A329348(j),
a(i) = a(j) => A329349(i) = A329349(j).
PROG
(PARI)
up_to = 1024;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A034386(n) = prod(i=1, primepi(n), prime(i));
A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f)/2);
v329345 = rgs_transform(vector(up_to, n, A246277(A329044(n))));
A329345(n) = v329345[n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 11 2019
STATUS
approved