OFFSET
0,2
COMMENTS
For n >= 1, a(n) is the number of chains of n X n (0, 1) matrices.
a(n) is also the number of chains in the power set of n^2 elements.
a(n) is the n^2-th term of A007047.
A chain of binary (crisp or Boolean or logical) matrices of order n can be thought of as a fuzzy matrix of order n.
a(n) is the number of distinct n X n fuzzy matrices.
a(n) is the sum of the n^2-th row of triangle A038719.
LINKS
Rajesh Kumar Mohapatra, Table of n, a(n) for n = 0..10
S. R. Kannan and Rajesh Kumar Mohapatra, Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques, arXiv preprint arXiv:1909.13678 [math.GM], 2019.
V. Murali, Combinatorics of counting finite fuzzy subsets, Fuzzy Sets and Systems, 157(17)(2006), 2403-2411.
V. Murali and B. Makamba, Finite Fuzzy Sets, International Journal of General Systems, Vol. 34 (1) (2005), pp. 61-75.
R. B. Nelsen and H. Schmidt, Jr., Chains in power sets, Math. Mag., 64 (1991), 23-31.
FORMULA
MAPLE
# P are the polynomials defined in A007047.
A328044 := n -> 2^(n^2)*subs(x=1/2, P(n^2, x)):
seq(A328044(n), n=0..7); # Peter Luschny, Oct 10 2019
MATHEMATICA
Array[2 PolyLog[-#^2, 1/2] - 1 &, 8, 0] (* Michael De Vlieger, Oct 05 2019, after Jean-François Alcover at A007047 *)
Table[2*PolyLog[-n^2, 1/2] - 1 , {n, 0, 29}]
CROSSREFS
KEYWORD
nonn
AUTHOR
S. R. Kannan, Rajesh Kumar Mohapatra, Oct 03 2019
STATUS
approved