OFFSET
1,3
COMMENTS
The corresponding denominators are given in A327341.
Dedekind's psi(k) = k*Product_{p|k}(1 + 1/p), with primes p, and the empty product is set to 1. See psi(k) = A001615(k), k >= 1. In the Walfisz reference psi(k) = phi_1(k).
In the Walfisz reference, Satz 2., p. 100, the approximation for Phi_1(x) = (15/(2*Pi^2))*x^2 + O(x*(log(x))^{2/3}) is given (with B instead of the O() notation). For the constant 15/(2*Pi^2) see A323669 .
REFERENCES
Arnold Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963, p. 100, Satz 2.
LINKS
Eric Weisstein's World of Mathematics, Dedekind Function.
Wikipedia, Dedekind psi function.
FORMULA
a(n) = numerator(r(n)), with the rationals r(n) = (1/n^2)*Sum{k=1..n}(k*Product_{p|k}(1 + 1/p)), with distinct prime p divisors of k (with empty product set to 1 for k = 1), for n >= 1.
a(n) = numerator(A173290(n)/n^2). - Amiram Eldar, Nov 24 2022
EXAMPLE
The rationals (in lowest terms) begin: 1/1, 1/1, 8/9, 7/8, 4/5, 8/9, 40/49, 13/16, 64/81, 41/50, 94/121, 59/72, 132/169, 39/49, 4/5, 51/64, 222/289, 43/54, 278/361, 157/200, 346/441, 191/242, 406/529, 227/288, 484/625, 263/338, 562/729, 305/392, 640/841, 178/225, 24/31, ...
The limit of r(n) for n-> infinity is A323669 = 0.759908877317533285829...
r(10^5) is approximatly 0.7599142240 (10 digits).
MATHEMATICA
psi[0] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); a[n_] := Numerator[Sum[psi[k], {k, 1, n}]/n^2]; Array[a, 50] (* Amiram Eldar, Sep 03 2019 *)
PROG
(PARI) dpsi(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
a(n) = numerator(sum(k=1, n, dpsi(k))/n^2); \\ Michel Marcus, Sep 18 2023
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Sep 03 2019
STATUS
approved