OFFSET
1,2
COMMENTS
a(n) is even for n >= 2. - Jianing Song, Nov 24 2018
REFERENCES
W. Hürlimann, Dedekind's arithmetic function and primitive four squares counting functions, Journal of Algebra, Number Theory: Advances and Applications, Volume 14, Number 2, 2015, Pages 73-88; http://scientificadvances.co.in; DOI: http://dx.doi.org/10.18642/jantaa_7100121599
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
W. Hürlimann, Dedekind's arithmetic function and primitive four squares counting functions, Journal of Algebra, Number Theory: Advances and Applications, Volume 14, Number 2, 2015, Pages 73-88.
FORMULA
a(n) = Sum_{i=1..n} A001615(i) = Sum_{i=1..n} (n * Product_{p|n, p prime} (1 + 1/p)).
a(n) = 15*n^2/(2*Pi^2) + O(n*log(n)). - Enrique Pérez Herrero, Jan 14 2012
a(n) = Sum_{i=1..n} A063659(i) * floor(n/i). - Enrique Pérez Herrero, Feb 23 2013
a(n) = (1/2)*Sum_{k=1..n} mu(k)^2 * floor(n/k) * floor(1+n/k), where mu(k) is the Moebius function. - Daniel Suteu, Nov 19 2018
a(n) = (Sum_{k=1..floor(sqrt(n))} k*(k+1) * (A013928(1+floor(n/k)) - A013928(1+floor(n/(k+1)))) + Sum_{k=1..floor(n/(1+floor(sqrt(n))))} mu(k)^2 * floor(n/k) * floor(1+n/k))/2. - Daniel Suteu, Nov 23 2018
MAPLE
with(numtheory): a:=n->(1/2)*add(mobius(k)^2*floor(n/k)*floor(1+n/k), k=1..n); seq(a(n), n=1..55); # Muniru A Asiru, Nov 24 2018
MATHEMATICA
Table[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k], {k, 1, n}], {n, 60}] (* G. C. Greubel, Nov 23 2018 *)
psi[n_] := If[n==1, 1, n*Times@@(1 + 1/FactorInteger[n][[;; , 1]])]; Accumulate[Array[psi, 50]] (* Amiram Eldar, Nov 23 2018 *)
PROG
(PARI)
S(n) = sum(k=1, sqrtint(n), moebius(k)*(n\(k*k))); \\ see: A013928
a(n) = sum(k=1, sqrtint(n), k*(k+1) * (S(n\k) - S(n\(k+1))))/2 + sum(k=1, n\(1+sqrtint(n)), moebius(k)^2*(n\k)*(1+n\k))/2; \\ Daniel Suteu, Nov 23 2018
(Sage)
def A173290(n) :
return add(k*mul(1+1/p for p in prime_divisors(k)) for k in (1..n))
[A173290(n) for n in (1..52)] # Peter Luschny, Jun 10 2012
(Magma) [(&+[MoebiusMu(k)^2*Floor(n/k)*Floor(1 + n/k): k in [1..n]])/2: n in [1..60]]; // G. C. Greubel, Nov 23 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Feb 15 2010
STATUS
approved