login
A173290
Partial sums of A001615.
10
1, 4, 8, 14, 20, 32, 40, 52, 64, 82, 94, 118, 132, 156, 180, 204, 222, 258, 278, 314, 346, 382, 406, 454, 484, 526, 562, 610, 640, 712, 744, 792, 840, 894, 942, 1014, 1052, 1112, 1168, 1240, 1282, 1378, 1422, 1494, 1566, 1638, 1686, 1782, 1838, 1928, 2000, 2084
OFFSET
1,2
COMMENTS
a(n) is even for n >= 2. - Jianing Song, Nov 24 2018
REFERENCES
W. Hürlimann, Dedekind's arithmetic function and primitive four squares counting functions, Journal of Algebra, Number Theory: Advances and Applications, Volume 14, Number 2, 2015, Pages 73-88; http://scientificadvances.co.in; DOI: http://dx.doi.org/10.18642/jantaa_7100121599
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
W. Hürlimann, Dedekind's arithmetic function and primitive four squares counting functions, Journal of Algebra, Number Theory: Advances and Applications, Volume 14, Number 2, 2015, Pages 73-88.
FORMULA
a(n) = Sum_{i=1..n} A001615(i) = Sum_{i=1..n} (n * Product_{p|n, p prime} (1 + 1/p)).
a(n) = 15*n^2/(2*Pi^2) + O(n*log(n)). - Enrique Pérez Herrero, Jan 14 2012
a(n) = Sum_{i=1..n} A063659(i) * floor(n/i). - Enrique Pérez Herrero, Feb 23 2013
a(n) = (1/2)*Sum_{k=1..n} mu(k)^2 * floor(n/k) * floor(1+n/k), where mu(k) is the Moebius function. - Daniel Suteu, Nov 19 2018
a(n) = (Sum_{k=1..floor(sqrt(n))} k*(k+1) * (A013928(1+floor(n/k)) - A013928(1+floor(n/(k+1)))) + Sum_{k=1..floor(n/(1+floor(sqrt(n))))} mu(k)^2 * floor(n/k) * floor(1+n/k))/2. - Daniel Suteu, Nov 23 2018
MAPLE
with(numtheory): a:=n->(1/2)*add(mobius(k)^2*floor(n/k)*floor(1+n/k), k=1..n); seq(a(n), n=1..55); # Muniru A Asiru, Nov 24 2018
MATHEMATICA
Table[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k], {k, 1, n}], {n, 60}] (* G. C. Greubel, Nov 23 2018 *)
psi[n_] := If[n==1, 1, n*Times@@(1 + 1/FactorInteger[n][[;; , 1]])]; Accumulate[Array[psi, 50]] (* Amiram Eldar, Nov 23 2018 *)
PROG
(PARI)
S(n) = sum(k=1, sqrtint(n), moebius(k)*(n\(k*k))); \\ see: A013928
a(n) = sum(k=1, sqrtint(n), k*(k+1) * (S(n\k) - S(n\(k+1))))/2 + sum(k=1, n\(1+sqrtint(n)), moebius(k)^2*(n\k)*(1+n\k))/2; \\ Daniel Suteu, Nov 23 2018
(Sage)
def A173290(n) :
return add(k*mul(1+1/p for p in prime_divisors(k)) for k in (1..n))
[A173290(n) for n in (1..52)] # Peter Luschny, Jun 10 2012
(Magma) [(&+[MoebiusMu(k)^2*Floor(n/k)*Floor(1 + n/k): k in [1..n]])/2: n in [1..60]]; // G. C. Greubel, Nov 23 2018
CROSSREFS
Cf. A082020.
Cf. A175836 (partial products of the Dedekind psi function).
Sequence in context: A121896 A368610 A375762 * A312686 A312687 A312688
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Feb 15 2010
STATUS
approved