login
A082020
Decimal expansion of 15/Pi^2.
39
1, 5, 1, 9, 8, 1, 7, 7, 5, 4, 6, 3, 5, 0, 6, 6, 5, 7, 1, 6, 5, 8, 1, 9, 1, 9, 4, 8, 1, 4, 5, 9, 1, 4, 5, 8, 3, 5, 6, 5, 3, 8, 1, 6, 2, 0, 0, 8, 3, 6, 9, 8, 2, 3, 2, 6, 8, 4, 1, 3, 5, 4, 7, 8, 4, 1, 2, 5, 9, 6, 8, 1, 4, 4, 3, 3, 5, 3, 1, 6, 1, 7, 8, 6, 8, 1, 3, 9, 1, 0, 8, 8, 8, 4, 3, 2, 7, 5, 6
OFFSET
1,2
COMMENTS
3/(2*Pi^2) (the same decimal expansion with an offset 0) is the probability that the greatest common divisor of two numbers selected at random is 2 (Christopher, 1956). - Amiram Eldar, May 23 2020
Sum of 1/n^2 over all squarefree n, see Penn link. - Charles R Greathouse IV, Jan 01 2022
Equals the asymptotic mean of the abundancy index of the cubefree numbers (A004709) (Jakimczuk and Lalín, 2022). - Amiram Eldar, May 12 2023
LINKS
John Christopher, The Asymptotic Density of Some k-Dimensional Sets, The American Mathematical Monthly, Vol. 63, No. 6 (1956), pp. 399-401.
Werner Hürlimann, Dedekind's arithmetic function and primitive four squares counting functions, Journal of Algebra, Number Theory: Advances and Applications, Vol. 14, No. 2 (2015), pp. 73-88.
Rafael Jakimczuk and Matilde Lalín, Asymptotics of sums of divisor functions over sequences with restricted factorization structure, Notes on Number Theory and Discrete Mathematics, Vol. 28, No. 4 (2022), pp. 617-634, eq. (1).
S. Ramanujan, Irregular numbers, J. Indian Math. Soc., Vol. 5 (1913), pp. 105-106.
V. Sitaramaiah and M. V. Subbarao, Some asymptotic formulae involving powers of arithmetic functions, Number Theory, Madras 1987, Springer, 1989, pp. 201-234, alternative link (p. 230).
Eric Weisstein's World of Mathematics, Prime Sums.
Eric Weisstein's World of Mathematics, Moebius Function.
Eric Weisstein's World of Mathematics, Prime Products.
FORMULA
Product_{n >= 1} (1+1/prime(n)^2) = 15/Pi^2 (Ramanujan).
Equals zeta(2)/zeta(4) = A013661/A013662 = Sum_{n>=1} mu(n)^2/n^2 = Sum_{n>=1} |mu(n)|/n^2 . - Enrique Pérez Herrero, Jan 15 2012
Equals Sum_{n>=1} 1/A005117(n)^2 . - Enrique Pérez Herrero, Mar 30 2012
Equals lim_{n->oo} (1/n) * Sum_{k=1..n} psi(k)/k, where psi(k) is the Dedekind psi function (A001615). - Amiram Eldar, May 12 2019.
Equals Sum_{k>=1} A007434(k)/k^4. - Amiram Eldar, Jan 25 2024
EXAMPLE
1.51981775463506657...
MAPLE
evalf(15/Pi^2, 120); # G. C. Greubel, Oct 18 2019
MATHEMATICA
A082020[digits_] := First[RealDigits[Zeta[2]/Zeta[4], 10, digits]]; A082020[100] (* Enrique Pérez Herrero, Jan 15 2012 *)
RealDigits[15/Pi^2, 10, 120][[1]] (* Harvey P. Dale, Jun 23 2019 *)
PROG
(PARI) 15/Pi^2 \\ Michel Marcus, Oct 18 2019
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); 15/Pi(R)^2; // G. C. Greubel, Oct 18 2019
(Sage) numerical_approx(15/pi^2, digits=100) # G. C. Greubel, Oct 18 2019
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, May 09 2003
STATUS
approved