login
A326475
A(n, k) = (m*k)! [x^k] MittagLefflerE(m, x)^(-n), for m = 3, n >= 0, k >= 0; square array read by descending antidiagonals.
3
1, 0, 1, 0, -1, 1, 0, 19, -2, 1, 0, -1513, 58, -3, 1, 0, 315523, -6218, 117, -4, 1, 0, -136085041, 1630330, -15795, 196, -5, 1, 0, 105261234643, -847053482, 4997781, -31924, 295, -6, 1, 0, -132705221399353, 766492673914, -3042574083, 11840836, -56285, 414, -7, 1
OFFSET
0,8
EXAMPLE
Array starts:
[0] 1, 0, 0, 0, 0, 0, ... A000007
[1] 1, -1, 19, -1513, 315523, -136085041, ... A002115
[2] 1, -2, 58, -6218, 1630330, -847053482, ...
[3] 1, -3, 117, -15795, 4997781, -3042574083, ...
[4] 1, -4, 196, -31924, 11840836, -8271354004, ...
[5] 1, -5, 295, -56285, 23952055, -18889306805, ...
[6] 1, -6, 414, -90558, 43493598, -38227720446, ...
MATHEMATICA
(* The function MLPower is defined in A326327. *)
For[n = 0, n < 8, n++, Print[MLPower[3, -n, 8]]]
PROG
(Sage) # uses[MLPower from A326327]
for n in (0..6): print(MLPower(3, -n, 9))
CROSSREFS
Cf. A326476 (m=2, p>=0), A326327 (m=2, p<=0), A326474 (m=3, p>=0), this sequence (m=3, p<=0).
Sequence in context: A223521 A018939 A262028 * A040356 A040355 A166032
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jul 08 2019
STATUS
approved