login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326010 G.f. A(x) satisfies: 0 = Sum_{n>=1} n * ((1+x)^n - A(x))^n. 2
1, 1, 2, 20, 282, 5134, 112053, 2823119, 80202565, 2529045393, 87523776013, 3295995672161, 134155142687732, 5869278171065418, 274718037952537674, 13701118397652347442, 725505704889894172448, 40658992718689480518864, 2404662897766073643050293, 149692182669205551972626617, 9784886698908632846522031701 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..200

FORMULA

G.f. A(x) satisfies:

(1) 0 = Sum_{n>=1} n * ((1+x)^n - A(x))^n.

(2) A(x) = P(x)/Q(x) where

P(x) = Sum_{n>=0} n * (1+x)^(n^2) / (1 + (1+x)^n*A(x))^(n+2),

Q(x) = Sum_{n>=0} (1+x)^(n*(n+1)) / (1 + (1+x)^n*A(x))^(n+2).

(3) A'(x) = P(x)/Q(x) where

P(x) = Sum_{n>=0} (n+1)^3 * ((1+x)^(n+1) - A(x))^n * (1+x)^n,

Q(x) = Sum_{n>=0} (n+1)^2 * ((1+x)^(n+1) - A(x))^n.

a(n) ~ c * d^n * sqrt(n) * n!, where d = A317855 = 3.16108865386... and c = 0.102568345138... - Vaclav Kotesovec, Jun 05 2019

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 20*x^3 + 282*x^4 + 5134*x^5 + 112053*x^6 + 2823119*x^7 + 80202565*x^8 + 2529045393*x^9 + 87523776013*x^10 + ...

such that

0 = ((1+x) - A(x)) + 2*((1+x)^2 - A(x))^2 + 3*((1+x)^3 - A(x))^3 + 4*((1+x)^4 - A(x))^4 + 5*((1+x)^5 - A(x))^5 + 6*((1+x)^6 - A(x))^6 + ...

The terms a(n) modulo 2 begin:

1,1,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,1,

0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,1,1,1,1,1,1,0,0,

0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,1,

0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,

1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,1,1,0,0,1,1,

0,0,0,0,1,1,1,1,0,0,1,1,1,1,1,1,0,0,1,1,1,1,0,0,

1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,

1,1,0,0,0,0,0,0,0, ...

PROG

(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = polcoeff( sum(m=1, #A, m* ((1+x)^m - Ser(A))^m ), #A-1)); A[n+1]}

for(n=0, 25, print1(a(n), ", "))

CROSSREFS

Sequence in context: A303616 A231499 A217364 * A246482 A124211 A277308

Adjacent sequences:  A326007 A326008 A326009 * A326011 A326012 A326013

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 04 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 01:33 EST 2019. Contains 329978 sequences. (Running on oeis4.)