The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326011 a(n) = (n+1) * (2^n + 1)^n. 2
 1, 6, 75, 2916, 417605, 234812358, 527932234375, 4755738419928072, 171280331996409907209, 24606864966197875457438730, 14080929986159936046600341796875, 32073236633246852578917758577924120588, 290760173774986242601808360162358149769707533, 10492680499171055486742235424276666079725581443186702, 1507792223578968167717594884445653164343553232898773193359375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS More generally, the following sums are equal: (1) Sum_{n>=0} binomial(n+k-1, n) * y^n * (F + G^n)^n, (2) Sum_{n>=0} binomial(n+k-1, n) * y^n * G^(n^2) / (1 - y*F*G^n)^(n+k), for any fixed integer k; here, k = 2 and y = x, F = 1, G = 2. LINKS FORMULA O.g.f.: Sum_{n>=0} (n+1) * (2^n + 1)^n * x^n. O.g.f.: Sum_{n>=0} (n+1) * 2^(n^2) * x^n / (1 - 2^n*x)^(n+2). E.g.f.: sum_{n>=0} (n+1 + 2^n*x) * 2^(n^2) * exp(2^n*x) * x^n/n!. EXAMPLE O.g.f.: A(x) = 1 + 6*x + 75*x^2 + 2916*x^3 + 417605*x^4 + 234812358*x^5 + 527932234375*x^6 + 4755738419928072*x^7 + ... + (n+1)*(2^n + 1)^n*x^n + ... such that A(x) = 1/(1 - x)^2 + 2*2*x/(1 - 2*x)^3 + 3*2^4*x^2/(1 - 2^2*x)^4 + 4*2^9*x^3/(1 - 2^3*x)^5 + 5*2^16*x^4/(1 - 2^4*x)^6 + 6*2^25*x^5/(1 - 2^5*x)^7 + 7*2^36*x^6/(1 - 2^6*x)^8 + ... + (n+1)*2^(n^2)*x^n/(1 - 2^n*x)^(n+2) + ... MATHEMATICA Table[(n+1)(2^n+1)^n, {n, 0, 20}] (* Harvey P. Dale, Mar 22 2020 *) PROG (PARI) {a(n) = (n+1) * (2^n + 1)^n} for(n=0, 15, print1(a(n), ", ")) (PARI) /* O.g.f. */ {a(n) = my(A = sum(m=0, n, (m+1) * 2^(m^2) * x^m / (1 - 2^m*x +x*O(x^n))^(m+2) )); polcoeff(A, n)} for(n=0, 15, print1(a(n), ", ")) (PARI) /* E.g.f. */ {a(n) = my(A = sum(m=0, n, (m+1 + 2^m*x) * 2^(m^2) * exp(2^m*x +x*O(x^n)) * x^m/m! )); n!*polcoeff(A, n)} for(n=0, 15, print1(a(n), ", ")) CROSSREFS Cf. A136516, A326012. Sequence in context: A081066 A185289 A336228 * A263228 A229571 A016090 Adjacent sequences:  A326008 A326009 A326010 * A326012 A326013 A326014 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 05 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 11:06 EST 2020. Contains 338799 sequences. (Running on oeis4.)