This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326009 E.g.f.: Sum_{n>=0} (exp((n+1)*x) + 1)^n * x^n / n!. 2
 1, 2, 8, 56, 564, 7452, 124126, 2527646, 61337576, 1740438008, 56893173354, 2116141180650, 88637462278492, 4144712080864292, 214742915441526686, 12247719772739219558, 764573919234220965072, 51977513845734053953776, 3830761480589037404767954, 304839727443701572462549058, 26096983659506717348854764356, 2395544800795092178844224643612, 235073598248121646307555752669446 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS More generally, the following sums are equal: (1) Sum_{n>=0} (p + q^n)^n * r^n/n!, (2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!; here, q = exp(x), p = exp(-x), r = exp(x)*x. LINKS FORMULA E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! equals the following sums. (1) Sum_{n>=0} (exp((n+1)*x) + 1)^n * x^n / n!, (2) Sum_{n>=0} exp(n*(n+1)*x) * exp(exp(n*x)*x) * x^n / n!. EXAMPLE E.g.f.: A(x) = 1 + 2*x + 8*x^2/2! + 56*x^3/3! + 564*x^4/4! + 7452*x^5/5! + 124126*x^6/6! + 2527646*x^7/7! + 61337576*x^8/8! + 1740438008*x^9/9! + 56893173354*x^10/10! + ... such that A(x) = 1 + (exp(2*x) + 1)*x + (exp(3*x) + 1)^2*x^2/2! + (exp(4*x) + 1)^3*x^3/3! + (exp(5*x) + 1)^4*x^4/4! + (exp(6*x) + 1)^5*x^5/5! + ... also A(x) = exp(x) + exp(2*x)*exp(exp(x)*x)*x + exp(6*x)*exp(exp(2*x)*x)*x^2/2! + exp(12*x)*exp(exp(3*x)*x)*x^3/3! + exp(20*x)*exp(exp(4*x)*x)*x^4/4! + ... PROG (PARI) /* E.g.f.: Sum_{n>=0} (1 + exp((n+1)*x))^n * x^n/n! */ {a(n) = my(A = sum(m=0, n, (1 + exp((m+1)*x +x*O(x^n)))^m * x^m/m! )); n!*polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) (PARI) /* E.g.f.: Sum_{n>=0} exp(n*(n+1)*x) * exp(exp(n*x)*x) * x^n/n! */ {a(n) = my(A = sum(m=0, n, exp(m*(m+1)*x + exp(m*x +x*O(x^n))*x ) * x^m/m! )); n!*polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A326090, A326550. Sequence in context: A097691 A181939 A124212 * A325290 A197949 A243953 Adjacent sequences:  A326006 A326007 A326008 * A326010 A326011 A326012 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 13 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 18:12 EST 2019. Contains 329847 sequences. (Running on oeis4.)