login
A325677
Irregular triangle read by rows where T(n,k) is the number of Golomb rulers of length n with k + 1 marks, k > 0.
21
1, 1, 1, 2, 1, 2, 1, 4, 1, 4, 2, 1, 6, 6, 1, 6, 8, 1, 8, 18, 1, 8, 16, 1, 10, 30, 4, 1, 10, 34, 14, 1, 12, 48, 28, 1, 12, 48, 42, 1, 14, 72, 76, 1, 14, 72, 100, 1, 16, 96, 160, 8, 1, 16, 98, 190, 8, 1, 18, 126, 284, 40, 1, 18, 128, 316, 70
OFFSET
1,4
COMMENTS
Also the number of length-k compositions of n such that every restriction to a subinterval has a different sum. A composition of n is a finite sequence of positive integers summing to n.
LINKS
Eric Weisstein's World of Mathematics, Golomb Ruler.
EXAMPLE
Triangle begins:
1
1
1 2
1 2
1 4
1 4 2
1 6 6
1 6 8
1 8 18
1 8 16
1 10 30 4
1 10 34 14
1 12 48 28
1 12 48 42
1 14 72 76
1 14 72 100
1 16 96 160 8
1 16 98 190 8
1 18 126 284 40
1 18 128 316 70
Row n = 8 counts the following rulers:
{0,8} {0,1,8} {0,1,3,8}
{0,2,8} {0,1,5,8}
{0,3,8} {0,1,6,8}
{0,5,8} {0,2,3,8}
{0,6,8} {0,2,7,8}
{0,7,8} {0,3,7,8}
{0,5,6,8}
{0,5,7,8}
and the following compositions:
(8) (17) (125)
(26) (143)
(35) (152)
(53) (215)
(62) (251)
(71) (341)
(512)
(521)
MATHEMATICA
DeleteCases[Table[Length[Select[Join@@Permutations/@IntegerPartitions[n, {k}], UnsameQ@@ReplaceList[#, {___, s__, ___}:>Plus[s]]&]], {n, 15}, {k, n}], 0, {2}]
CROSSREFS
Row sums are A169942.
Row lengths are A325678(n) = A143824(n + 1) - 1.
Column k = 2 is A052928.
Column k = 3 is A325686.
Rightmost column is A325683.
Sequence in context: A238552 A257523 A067044 * A343411 A287477 A231473
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, May 13 2019
STATUS
approved