The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A169942 Number of Golomb rulers of length n. 36
 1, 1, 3, 3, 5, 7, 13, 15, 27, 25, 45, 59, 89, 103, 163, 187, 281, 313, 469, 533, 835, 873, 1319, 1551, 2093, 2347, 3477, 3881, 5363, 5871, 8267, 9443, 12887, 14069, 19229, 22113, 29359, 32229, 44127, 48659, 64789, 71167, 94625, 105699, 139119, 151145, 199657 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Wanted: a recurrence. Are any of A169940-A169954 related to any other entries in the OEIS? Leading entry in row n of triangle in A169940. Also the number of Sidon sets A with min(A) = 0 and max(A) = n. Odd for all n since {0,n} is the only symmetric Golomb ruler, and reversal preserves the Golomb property. Bounded from above by A032020 since the ruler {0 < r_1 < ... < r_t < n} gives rise to a composition of n: (r_1 - 0, r_2 - r_1, ... , n - r_t) with distinct parts. - Tomas Boothby, May 15 2012 Also the number of compositions of n such that every restriction to a subinterval has a different sum. This is a stronger condition than all distinct consecutive subsequences having a different sum (cf. A325676). - Gus Wiseman, May 16 2019 LINKS Fausto A. C. Cariboni, Table of n, a(n) for n = 1..99 T. Pham, Enumeration of Golomb Rulers (Master's thesis), San Francisco State U., 2011. Eric Weisstein's World of Mathematics, Golomb Ruler. FORMULA a(n) = A169952(n) - A169952(n-1) for n>1. - Andrew Howroyd, Jul 09 2017 EXAMPLE For n=2, there is one Golomb Ruler: {0,2}.  For n=3, there are three: {0,3}, {0,1,3}, {0,2,3}. - Tomas Boothby, May 15 2012 From Gus Wiseman, May 16 2019: (Start) The a(1) = 1 through a(8) = 15 compositions such that every restriction to a subinterval has a different sum:   (1)  (2)  (3)   (4)   (5)   (6)    (7)    (8)             (12)  (13)  (14)  (15)   (16)   (17)             (21)  (31)  (23)  (24)   (25)   (26)                         (32)  (42)   (34)   (35)                         (41)  (51)   (43)   (53)                               (132)  (52)   (62)                               (231)  (61)   (71)                                      (124)  (125)                                      (142)  (143)                                      (214)  (152)                                      (241)  (215)                                      (412)  (251)                                      (421)  (341)                                             (512)                                             (521) (End) MATHEMATICA Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], UnsameQ@@ReplaceList[#, {___, s__, ___}:>Plus[s]]&]], {n, 15}] (* Gus Wiseman, May 16 2019 *) PROG (Sage) def A169942(n):     R = QQ['x']     return sum(1 for c in cartesian_product([[0, 1]]*n) if max(R([1] + list(c) + [1])^2) == 2) [A169942(n) for n in range(1, 8)] # Tomas Boothby, May 15 2012 CROSSREFS Related to thickness: A169940-A169954, A061909. Related to Golomb rulers: A036501, A054578, A143823. Row sums of A325677. Cf. A000079, A103295, A103300, A108917, A143824, A325466, A325545, A325676, A325678, A325679, A325683, A325686. Sequence in context: A001588 A107029 A240180 * A215777 A147095 A161626 Adjacent sequences:  A169939 A169940 A169941 * A169943 A169944 A169945 KEYWORD nonn AUTHOR N. J. A. Sloane, Aug 01 2010 EXTENSIONS a(15)-a(30) from Nathaniel Johnston, Nov 12 2011 a(31)-a(50) from Tomas Boothby, May 15 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 22:45 EST 2021. Contains 340213 sequences. (Running on oeis4.)