OFFSET
1,3
COMMENTS
Leading entry in row n of triangle in A169940. Also the number of Sidon sets A with min(A) = 0 and max(A) = n. Odd for all n since {0,n} is the only symmetric Golomb ruler, and reversal preserves the Golomb property. Bounded from above by A032020 since the ruler {0 < r_1 < ... < r_t < n} gives rise to a composition of n: (r_1 - 0, r_2 - r_1, ... , n - r_t) with distinct parts. - Tomas Boothby, May 15 2012
Also the number of compositions of n such that every restriction to a subinterval has a different sum. This is a stronger condition than all distinct consecutive subsequences having a different sum (cf. A325676). - Gus Wiseman, May 16 2019
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 1..99
T. Pham, Enumeration of Golomb Rulers (Master's thesis), San Francisco State U., 2011.
Eric Weisstein's World of Mathematics, Golomb Ruler.
FORMULA
EXAMPLE
For n=2, there is one Golomb Ruler: {0,2}. For n=3, there are three: {0,3}, {0,1,3}, {0,2,3}. - Tomas Boothby, May 15 2012
From Gus Wiseman, May 16 2019: (Start)
The a(1) = 1 through a(8) = 15 compositions such that every restriction to a subinterval has a different sum:
(1) (2) (3) (4) (5) (6) (7) (8)
(12) (13) (14) (15) (16) (17)
(21) (31) (23) (24) (25) (26)
(32) (42) (34) (35)
(41) (51) (43) (53)
(132) (52) (62)
(231) (61) (71)
(124) (125)
(142) (143)
(214) (152)
(241) (215)
(412) (251)
(421) (341)
(512)
(521)
(End)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], UnsameQ@@ReplaceList[#, {___, s__, ___}:>Plus[s]]&]], {n, 15}] (* Gus Wiseman, May 16 2019 *)
PROG
(Sage)
def A169942(n):
R = QQ['x']
return sum(1 for c in cartesian_product([[0, 1]]*n) if max(R([1] + list(c) + [1])^2) == 2)
[A169942(n) for n in range(1, 8)]
# Tomas Boothby, May 15 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 01 2010
EXTENSIONS
a(15)-a(30) from Nathaniel Johnston, Nov 12 2011
a(31)-a(50) from Tomas Boothby, May 15 2012
STATUS
approved